题目内容
在△ABC中,角A,B,C的对边分别为a,b,c,已知cosA=
,b=5c.
(1)求sinC的值;
(2)求sin(2A+C)的值;
(3)若△ABC的面积S=
sinBsinC,求a的值.
| 4 |
| 5 |
(1)求sinC的值;
(2)求sin(2A+C)的值;
(3)若△ABC的面积S=
| 3 |
| 2 |
(1)∵a2=b2+c2-2bccosA=26c2-10c2×
=18c2,
∴a=3
c.
∵cosA=
,0<A<π,∴sinA=
.
∵
=
,
∴sinC=
=
=
;
(2)∵c<a,∴C为锐角,
∴cosC=
=
.
∵sin2A=2sinAcosA=2×
×
=
,
cos2A=2cos2A-1=2×
-1=
,
∴sin(2A+C)=sin2AcosC+cos2AsinC
=
×
+
×
=
;
(3)∵b=5c,∴
=
=5,sinB=5sinC.
∴
sinBsinC=
sin2C=
.
又∵S=
bcsinA=
c2=
,
∴
=
,
∴a=
.
| 4 |
| 5 |
∴a=3
| 2 |
∵cosA=
| 4 |
| 5 |
| 3 |
| 5 |
∵
| a |
| sinA |
| c |
| sinC |
∴sinC=
| csinA |
| a |
c×
| ||
3
|
| ||
| 10 |
(2)∵c<a,∴C为锐角,
∴cosC=
| 1-sin2C |
7
| ||
| 10 |
∵sin2A=2sinAcosA=2×
| 3 |
| 5 |
| 4 |
| 5 |
| 24 |
| 25 |
cos2A=2cos2A-1=2×
| 16 |
| 25 |
| 7 |
| 25 |
∴sin(2A+C)=sin2AcosC+cos2AsinC
=
| 24 |
| 25 |
7
| ||
| 10 |
| 7 |
| 25 |
| ||
| 10 |
7
| ||
| 10 |
(3)∵b=5c,∴
| sinB |
| sinC |
| b |
| c |
∴
| 3 |
| 2 |
| 15 |
| 2 |
| 3 |
| 20 |
又∵S=
| 1 |
| 2 |
| 3 |
| 2 |
| a2 |
| 12 |
∴
| a2 |
| 12 |
| 3 |
| 20 |
∴a=
3
| ||
| 5 |
练习册系列答案
相关题目
在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
bc,且b=
a,则下列关系一定不成立的是( )
| 3 |
| 3 |
| A、a=c |
| B、b=c |
| C、2a=c |
| D、a2+b2=c2 |