题目内容

已知函数
(Ⅰ)若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)设g(x)=x2﹣2x,若对任意x1∈(0,2],均存在x2∈(0,2],
使得f(x1)<g(x2),求a的取值范围.
解:(Ⅰ)∵函数
(x>0).
∵曲线y=f(x)在x=1和x=3处的切线互相平行,
∴f'(1)=f'(3),

解得
(Ⅱ)(x>0).
①当a≤0时,x>0,ax﹣1<0,
在区间(0,2)上,f'(x)>0;
在区间(2,+∞)上f'(x)<0,
故f(x)的单调递增区间是(0,2),单调递减区间是(2,+∞).
②当时,
在区间(0,2)和上,f'(x)>0;
在区间上f'(x)<0,
故f(x)的单调递增区间是(0,2)和,单调递减区间是
③当时,
故f(x)的单调递增区间是(0,+∞).
④当时,
在区间和(2,+∞)上,f'(x)>0;
在区间上f'(x)<0,
故f(x)的单调递增区间是和(2,+∞),单调递减区间是
(Ⅲ)由已知,在(0,2]上有f(x)max<g(x)max
由已知,g(x)max=0,由(Ⅱ)可知,
①当时,f(x)在(0,2]上单调递增,
故f(x)max=f(2)=2a﹣2(2a+1)+2ln2=﹣2a﹣2+2ln2,
所以,﹣2a﹣2+2ln2<0,解得a>ln2﹣1,

②当时,f(x)在上单调递增,在上单调递减,

可知
2lna>﹣2,﹣2lna<2,
所以,﹣2﹣2lna<0,f(x) max<0,
综上所述,a>ln2﹣1.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网