题目内容
在公差不为0的等差数列{an}和等比数列{bn}中,已知a1=b1=1,a2=b2,a8=b3;
(1)求{an}的公差d和{bn}的公比q;
(2)设cn=an+bn+2,求数列{cn}的通项公式cn及前n项和Sn.
(1)求{an}的公差d和{bn}的公比q;
(2)设cn=an+bn+2,求数列{cn}的通项公式cn及前n项和Sn.
(1)由
得
(3分)
∴(1+d)2=1+7d,即,d2=5d,
又∵d≠0,
∴d=5,从而q=6(6分)
(2)∵an=a1+(n-1)d=5n-4,bn=b1qn-1=6n-1
∴cn=an+bn=5n-4+6n-1+2=6n-1+5n-2(9分)
从而,Sn=
+
=
+
n2+
n-
(12分)
|
得
|
∴(1+d)2=1+7d,即,d2=5d,
又∵d≠0,
∴d=5,从而q=6(6分)
(2)∵an=a1+(n-1)d=5n-4,bn=b1qn-1=6n-1
∴cn=an+bn=5n-4+6n-1+2=6n-1+5n-2(9分)
从而,Sn=
| 1-6n |
| 1-6 |
| n(3+5n-2) |
| 2 |
=
| 6n |
| 5 |
| 5 |
| 2 |
| 1 |
| 2 |
| 1 |
| 5 |
练习册系列答案
相关题目