题目内容

在△ABC中,a、b、c分别是角∠A、∠B、∠C所对的边.已知4sinBcos2
B
2
=sin2B+
3

(Ⅰ)求∠B的大小;
(Ⅱ)若a=4,△ABC的面积为5
3
,求b的值.
(Ⅰ)由已知4sinBcos2
B
2
=sin2B+
3

可得:2sinB(cosB+1)=2sinBcosB+
3
,即2sinB=
3

解得:sinB=
3
2

所以,B=
π
3
B=
3
;(5分)
(Ⅱ)由a=4,sinB=
3
2
,代入
1
2
acsinB=5
3
得:c=5,
由余弦定理得:b2=16+25-2×4×5×cosB=41-40cosB,
B=
π
3
时,b=
41-40×
1
2
=
21

B=
3
时,b=
41-40×(-
1
2
)
=
61
.(10分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网