题目内容
已知数列{an}的前三项依次为-2,2,6,且前n项和Sn是n的不含常数项的二次函数,则a100=( )
| A.394 | B.392 | C.390 | D.396 |
由题意可得:等差数列的前n项和的表达式为:Sn=a1n+
=
n2+(a1-
)n,
所以等差数列的前n项和的表达式是n的不含常数项的二次函数,
因为数列{an}的前n项和Sn是n的不含常数项的二次函数,
所以数列{an}是等差数列.
又因为数列{an}的前三项依次为-2,2,6,
所以数列的首项为-2,公差为4,
所以数列{an}的通项公式为:an=4n-6,
所以a100=394.
故选A.
| n(n-1)d |
| 2 |
| d |
| 2 |
| d |
| 2 |
所以等差数列的前n项和的表达式是n的不含常数项的二次函数,
因为数列{an}的前n项和Sn是n的不含常数项的二次函数,
所以数列{an}是等差数列.
又因为数列{an}的前三项依次为-2,2,6,
所以数列的首项为-2,公差为4,
所以数列{an}的通项公式为:an=4n-6,
所以a100=394.
故选A.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |