ÌâÄ¿ÄÚÈÝ
£¨2013•ÉîÛÚһ죩ÒÑÖªf(x)=x-
(a£¾0)£¬g£¨x£©=2lnx+bx£¬ÇÒÖ±Ïßy=2x-2ÓëÇúÏßy=g£¨x£©ÏàÇУ®
£¨1£©Èô¶Ô[1£¬+¡Þ£©ÄÚµÄÒ»ÇÐʵÊýx£¬²»µÈʽf£¨x£©¡Ýg£¨x£©ºã³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨2£©µ±a=1ʱ£¬Çó×î´óµÄÕýÕûÊýk£¬Ê¹µÃ¶Ô[e£¬3]£¨e=2.71828¡ÊÇ×ÔÈ»¶ÔÊýµÄµ×Êý£©ÄÚµÄÈÎÒâk¸öʵÊýx1£¬x2£¬¡£¬xk¶¼ÓÐf£¨x1£©+f£¨x2£©+¡+f£¨xk-1£©¡Ü16g£¨xk£©³ÉÁ¢£»
£¨3£©ÇóÖ¤£º
£¾ln(2n+1)(n¡ÊN*)£®
| a |
| x |
£¨1£©Èô¶Ô[1£¬+¡Þ£©ÄÚµÄÒ»ÇÐʵÊýx£¬²»µÈʽf£¨x£©¡Ýg£¨x£©ºã³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨2£©µ±a=1ʱ£¬Çó×î´óµÄÕýÕûÊýk£¬Ê¹µÃ¶Ô[e£¬3]£¨e=2.71828¡ÊÇ×ÔÈ»¶ÔÊýµÄµ×Êý£©ÄÚµÄÈÎÒâk¸öʵÊýx1£¬x2£¬¡£¬xk¶¼ÓÐf£¨x1£©+f£¨x2£©+¡+f£¨xk-1£©¡Ü16g£¨xk£©³ÉÁ¢£»
£¨3£©ÇóÖ¤£º
| n |
| i=1 |
| 4i |
| 4i2-1 |
·ÖÎö£º£¨1£©Ê×ÏÈÉè³öÖ±Ïßy=2x-2ÓëÇúÏßy=g£¨x£©µÄÇе㣬°ÑÇеã´úÈëÁ½ÇúÏß·½³ÌºóÁªÁ¢¿ÉÇóµÃbµÄÖµ£¬½â³ög£¨x£©ºó°Ñf£¨x£©ºÍg£¨x£©µÄ½âÎöʽ´úÈëf£¨x£©¡Ýg£¨x£©£¬·ÖÀë±äÁ¿aºó¶Ôº¯Êý½øÐÐÁ½´ÎÇ󵼵õ½º¯ÊýÔÚÇø¼ä[1£¬+¡Þ£©ÄÚµÄ×îСֵ£¬ÔòʵÊýaµÄ·¶Î§¿ÉÇó£»
£¨2£©µ±a=1ʱ¿ÉÖ¤µÃº¯Êýf£¨x£©ÔÚ[e£¬3]ÉÏΪÔöº¯Êý£¬¶øg£¨x£©Ò²ÊÇÔöº¯Êý£¬°Ñ²»µÈʽ×ó±ß·Å´óÈ¡×î´óÖµ£¬ÓÒ±ßÈ¡×îСֵ£¬´úÈëºó¼´¿ÉÇó½â×î´óµÄÕýÕûÊýk£»
£¨3£©¸ÃÃüÌâÊÇÓë×ÔÈ»ÊýÓйصIJ»µÈʽ£¬²ÉÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£¬ÓɹéÄɼÙÉèÖ¤Ã÷n=k+1³ÉÁ¢Ê±£¬´©²åÔËÓ÷ÖÎö·¨£®
£¨2£©µ±a=1ʱ¿ÉÖ¤µÃº¯Êýf£¨x£©ÔÚ[e£¬3]ÉÏΪÔöº¯Êý£¬¶øg£¨x£©Ò²ÊÇÔöº¯Êý£¬°Ñ²»µÈʽ×ó±ß·Å´óÈ¡×î´óÖµ£¬ÓÒ±ßÈ¡×îСֵ£¬´úÈëºó¼´¿ÉÇó½â×î´óµÄÕýÕûÊýk£»
£¨3£©¸ÃÃüÌâÊÇÓë×ÔÈ»ÊýÓйصIJ»µÈʽ£¬²ÉÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£¬ÓɹéÄɼÙÉèÖ¤Ã÷n=k+1³ÉÁ¢Ê±£¬´©²åÔËÓ÷ÖÎö·¨£®
½â´ð£º½â£º£¨1£©Éèµã£¨x0£¬y0£©ÎªÖ±Ïßy=2x-2ÓëÇúÏßy=g£¨x£©µÄÇе㣬ÔòÓÐ2lnx0+bx0=2x0-2¢Ù
¡ßg¡ä(x)=
+b£¬¡à
+b=2¢Ú
Óɢڵã¬2x0-2=bx0£¬´úÈë¢ÙµÃx0=1£¬ËùÒÔb=0£¬Ôòg£¨x£©=2lnx£®
ÓÉf£¨x£©¡Ýg£¨x£©£¬¼´x-
¡Ý2lnx£¬ÕûÀíµÃ
¡Üx-2lnx£¬
¡ßx¡Ý1£¬¡àҪʹ²»µÈʽf£¨x£©¡Ýg£¨x£©ºã³ÉÁ¢£¬±ØÐëa¡Üx2-2xlnxºã³ÉÁ¢£®
Éèh£¨x£©=x2-2xlnx£¬h¡ä(x)=2x-2(lnx+x•
)=2x-2lnx-2£¬
¡ßh¡å(x)=2-
£¬¡àµ±x¡Ý1ʱ£¬h''£¨x£©¡Ý0£¬Ôòh'£¨x£©ÊÇÔöº¯Êý£¬
¡àh'£¨x£©¡Ýh'£¨1£©=0£¬¡àh£¨x£©ÊÇÔöº¯Êý£¬Ôòh£¨x£©¡Ýh£¨1£©=1£¬¡àa¡Ü1£®
ÓÖa£¾0£¬Òò´Ë£¬ÊµÊýaµÄȡֵ·¶Î§ÊÇ0£¼a¡Ü1£®
£¨2£©µ±a=1ʱ£¬f(x)=x-
£¬¡ßf¡ä(x)=1+
£¾0£¬¡àf£¨x£©ÔÚ[e£¬3]ÉÏÊÇÔöº¯Êý£¬
f£¨x£©ÔÚ[e£¬3]ÉϵÄ×î´óֵΪf(3)=
£®
Òª¶Ô[e£¬3]ÄÚµÄÈÎÒâk¸öʵÊýx1£¬x2£¬¡£¬xk£¬¶¼ÓÐf£¨x1£©+f£¨x2£©+¡+f£¨xk-1£©¡Ü16g£¨xk£©³ÉÁ¢£¬
±ØÐëʹµÃ²»µÈʽ×ó±ßµÄ×î´óֵСÓÚ»òµÈÓÚÓұߵÄ×îСֵ£¬¡ßµ±x1=x2=¡=xk-1=3ʱ²»µÈʽ×ó±ßÈ¡µÃ×î´óÖµ£¬
xk=eʱ²»µÈʽÓÒ±ßÈ¡µÃ×îСֵ£®¡à£¨k-1£©f£¨3£©¡Ü16g£¨3£©£¬¼´(k-1)¡Á
¡Ü16¡Á2£¬½âµÃk¡Ü13£®
Òò´Ë£¬kµÄ×î´óֵΪ13£®
£¨3£©Ö¤Ã÷£º1¡ãµ±n=1ʱ£¬×ó±ß=
£¬ÓÒ±ß=ln3£¬
¸ù¾Ý£¨1£©µÄÍÆµ¼ÓУ¬x¡Ê£¨1£¬+¡Þ£©Ê±£¬f£¨x£©£¾g£¨x£©£¬¼´x-
£¾2lnx£®
Áîx=3£¬µÃ3-
£¾2ln3£¬¼´
£¾ln3£®
Òò´Ë£¬n=1ʱ²»µÈʽ³ÉÁ¢£®
2¡ã¼ÙÉèµ±n=kʱ²»µÈʽ³ÉÁ¢£¬¼´
£¾ln(2k+1)£¬
Ôòµ±n=k+1ʱ£¬
=
+
£¾ln(2k+1)+
£¬
ÒªÖ¤n=k+1ʱÃüÌâ³ÉÁ¢£¬¼´Ö¤ln(2k+1)+
£¾ln(2k+3)£¬
¼´Ö¤
£¾ln
£®
ÔÚ²»µÈʽx-
£¾2lnxÖУ¬Áîx=
£¬µÃln
£¼
(
-
)=
£®
¡àn=k+1ʱÃüÌâÒ²³ÉÁ¢£®
×ÛÉÏËùÊö£¬²»µÈʽ
£¾ln(2n+1)¶ÔÒ»ÇÐn¡ÊN*³ÉÁ¢£®
¡ßg¡ä(x)=
| 2 |
| x |
| 2 |
| x0 |
Óɢڵã¬2x0-2=bx0£¬´úÈë¢ÙµÃx0=1£¬ËùÒÔb=0£¬Ôòg£¨x£©=2lnx£®
ÓÉf£¨x£©¡Ýg£¨x£©£¬¼´x-
| a |
| x |
| a |
| x |
¡ßx¡Ý1£¬¡àҪʹ²»µÈʽf£¨x£©¡Ýg£¨x£©ºã³ÉÁ¢£¬±ØÐëa¡Üx2-2xlnxºã³ÉÁ¢£®
Éèh£¨x£©=x2-2xlnx£¬h¡ä(x)=2x-2(lnx+x•
| 1 |
| x |
¡ßh¡å(x)=2-
| 2 |
| x |
¡àh'£¨x£©¡Ýh'£¨1£©=0£¬¡àh£¨x£©ÊÇÔöº¯Êý£¬Ôòh£¨x£©¡Ýh£¨1£©=1£¬¡àa¡Ü1£®
ÓÖa£¾0£¬Òò´Ë£¬ÊµÊýaµÄȡֵ·¶Î§ÊÇ0£¼a¡Ü1£®
£¨2£©µ±a=1ʱ£¬f(x)=x-
| 1 |
| x |
| 1 |
| x2 |
f£¨x£©ÔÚ[e£¬3]ÉϵÄ×î´óֵΪf(3)=
| 8 |
| 3 |
Òª¶Ô[e£¬3]ÄÚµÄÈÎÒâk¸öʵÊýx1£¬x2£¬¡£¬xk£¬¶¼ÓÐf£¨x1£©+f£¨x2£©+¡+f£¨xk-1£©¡Ü16g£¨xk£©³ÉÁ¢£¬
±ØÐëʹµÃ²»µÈʽ×ó±ßµÄ×î´óֵСÓÚ»òµÈÓÚÓұߵÄ×îСֵ£¬¡ßµ±x1=x2=¡=xk-1=3ʱ²»µÈʽ×ó±ßÈ¡µÃ×î´óÖµ£¬
xk=eʱ²»µÈʽÓÒ±ßÈ¡µÃ×îСֵ£®¡à£¨k-1£©f£¨3£©¡Ü16g£¨3£©£¬¼´(k-1)¡Á
| 8 |
| 3 |
Òò´Ë£¬kµÄ×î´óֵΪ13£®
£¨3£©Ö¤Ã÷£º1¡ãµ±n=1ʱ£¬×ó±ß=
| 4 |
| 3 |
¸ù¾Ý£¨1£©µÄÍÆµ¼ÓУ¬x¡Ê£¨1£¬+¡Þ£©Ê±£¬f£¨x£©£¾g£¨x£©£¬¼´x-
| 1 |
| x |
Áîx=3£¬µÃ3-
| 1 |
| 3 |
| 4 |
| 3 |
Òò´Ë£¬n=1ʱ²»µÈʽ³ÉÁ¢£®
2¡ã¼ÙÉèµ±n=kʱ²»µÈʽ³ÉÁ¢£¬¼´
| k |
| i=1 |
| 4i |
| 4i2-1 |
Ôòµ±n=k+1ʱ£¬
| k+1 |
| i=1 |
| 4i |
| 4i2-1 |
| k |
| i=1 |
| 4i |
| 4i2-1 |
| 4(k+1) |
| 4(k+1)2-1 |
| 4(k+1) |
| 4(k+1)2-1 |
ÒªÖ¤n=k+1ʱÃüÌâ³ÉÁ¢£¬¼´Ö¤ln(2k+1)+
| 4(k+1) |
| 4(k+1)2-1 |
¼´Ö¤
| 4(k+1) |
| 4(k+1)2-1 |
| 2k+3 |
| 2k+1 |
ÔÚ²»µÈʽx-
| 1 |
| x |
| 2k+3 |
| 2k+1 |
| 2k+3 |
| 2k+1 |
| 1 |
| 2 |
| 2k+3 |
| 2k+1 |
| 2k+1 |
| 2k+3 |
| 4(k+1) |
| 4(k+1)2-1 |
¡àn=k+1ʱÃüÌâÒ²³ÉÁ¢£®
×ÛÉÏËùÊö£¬²»µÈʽ
| n |
| i=1 |
| 4i |
| 4i2-1 |
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éº¯ÊýµÄÐÔÖÊ¡¢µ¼ÊýÔËËã·¨Ôò¡¢µ¼ÊýµÄ¼¸ºÎÒâÒå¼°ÆäÓ¦Óᢲ»µÈʽµÄÇó½âÓëÖ¤Ã÷¡¢Êýѧ¹éÄÉ·¨µÈ×ÛºÏ֪ʶ£¬¿¼²éѧÉúµÄ¼ÆËãÍÆÀíÄÜÁ¦¼°·ÖÎöÎÊÌâ¡¢½â¾öÎÊÌâµÄÄÜÁ¦¼°´´ÐÂÒâʶ£¬ÊôÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿