题目内容

等比数列{an}中,公比q≠0,前n项和为Sn,则S8a9与S9a8的大小为
q>0时,S8•a9<S9•a8,q<0时,S8•a9>S9•a8
q>0时,S8•a9<S9•a8,q<0时,S8•a9>S9•a8
分析:首先对S8•a9-S9•a8两式作差,然后根据等比数列通项公式和前n项和公式,对其整理变形,进而判断符号可得答案.
解答:解:S8•a9-S9•a8
=
a1(1-q8)
1-q
•a1q8-
a1(1-q9)
1-q
•a1q7
=
a12[(q8-q16)-(q7-a16)]
1-q

=
a12(q8-q7)
1-q
=-a12q7
当q>0,则S8•a9-S9•a8<0,即S8•a9<S9•a8
当q<0,则S8•a9-S9•a8>0,即S8•a9>S9•a8
故答案为:q>0时,S8•a9<S9•a8,q<0时,S8•a9>S9•a8
点评:本题考查等比数列通项公式和前n项和公式,同时考查作差法比较大小,以及分类讨论的思想,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网