题目内容
(I)求证:△ABE≌△ACD;
(Ⅱ)若AB=6,BC=4,求AE.
分析:(I)在△ABE和△ACD中,由AB=AC,知∠ABE=∠ACD,由∠BAE=∠EDC,BD∥MN,知∠EDC=∠DCN,再由直线是圆的切线能够证明△ABE≌△ACD.
(Ⅱ)由∠EBC=∠BCM,∠BCM=∠BDC,知∠EBC=∠BDC=∠BAC,BC=CD=4,由∠BEC=∠BAC+∠ABE=∠EBC+∠ABE=∠ABC=∠ACB,得到BC=BE=4,△ABE∽△DEC,由此能够推导出AE.
(Ⅱ)由∠EBC=∠BCM,∠BCM=∠BDC,知∠EBC=∠BDC=∠BAC,BC=CD=4,由∠BEC=∠BAC+∠ABE=∠EBC+∠ABE=∠ABC=∠ACB,得到BC=BE=4,△ABE∽△DEC,由此能够推导出AE.
解答:解:(I)在△ABE和△ACD中,
∵AB=AC,∴∠ABE=∠ACD,
∵∠BAE=∠EDC,BD∥MN,∴∠EDC=∠DCN,
∵直线是圆的切线,∴∠DCN=∠CAD,∴∠BAE=∠CAD,
∴△ABE≌△ACD.
(Ⅱ)∵∠EBC=∠BCM,∠BCM=∠BDC,
∴∠EBC=∠BDC=∠BAC,BC=CD=4,
∵∠BEC=∠BAC+∠ABE=∠EBC+∠ABE=∠ABC=∠ACB,
∴BC=BE=4,△ABE∽△DEC,
设AE=x,则
=
=
,
解得DE=
x,
∵AE•EC=BE•ED,∴EC=6-x,
4•
x=x(6-x),解得x=
.
∵AB=AC,∴∠ABE=∠ACD,
∵∠BAE=∠EDC,BD∥MN,∴∠EDC=∠DCN,
∵直线是圆的切线,∴∠DCN=∠CAD,∴∠BAE=∠CAD,
∴△ABE≌△ACD.
(Ⅱ)∵∠EBC=∠BCM,∠BCM=∠BDC,
∴∠EBC=∠BDC=∠BAC,BC=CD=4,
∵∠BEC=∠BAC+∠ABE=∠EBC+∠ABE=∠ABC=∠ACB,
∴BC=BE=4,△ABE∽△DEC,
设AE=x,则
| DE |
| x |
| DC |
| AB |
| 4 |
| 6 |
解得DE=
| 2 |
| 3 |
∵AE•EC=BE•ED,∴EC=6-x,
4•
| 2 |
| 3 |
| 10 |
| 3 |
点评:本题考查三角形全等的证明,考查线段长的求法,解题时要认真审题,仔细解答,注意与圆有关的线段的应用.
练习册系列答案
相关题目