题目内容

(本小题满分13分)设数列的前项和为.已知.

(1)写出的值,并求数列的通项公式;

(2)记为数列的前项和,求

(3)若数列满足,求数列的通项公式.

 

【答案】

(1);(2);(3)

【解析】

试题分析:(Ⅰ)由已知得,.    …………………2分

由题意,,则当时,.

两式相减,得).    ………………………3分

又因为

所以数列是以首项为,公比为的等比数列,

所以数列的通项公式是). ………………………………4分

(Ⅱ)因为

所以, ……………………5分

两式相减得,, ………7分

整理得, ().        ………………………………8分

(Ⅲ) 当时,依题意得,,… , .

相加得,. …………………11分

依题意.

因为,所以).

显然当时,符合.

所以().            …………………13分

考点:数列通项公式的求法。错位相减法求数列前n项和。

点评:我们要熟练掌握求数列通项公式的方法。公式法是求数列通项公式的基本方法之一,常用的公式有:等差数列的通项公式、等比数列的通项公式及公式。此题的第一问求数列的通项公式就是用公式,用此公式要注意讨论的情况。

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网