题目内容
已知α、β为锐角,向量
=(cosα,sinα),
=(cosβ,sinβ),
=(
,-
).
(1)若
•
=
,
•
=
,求角2β-α的值;
(2)若
=
+
,求tanα的值.
| a |
| b |
| c |
| 1 |
| 2 |
| 1 |
| 2 |
(1)若
| a |
| b |
| ||
| 2 |
| a |
| c |
| ||
| 4 |
(2)若
| a |
| b |
| c |
(1)∵
•
=(cosα,sinα)•(cosβ,sinβ),
=cosαcosβ+sinαsinβ
=cos(α-β)=
,①
•
=(cosα,sinα)•(
,-
),
=
cosα-
sinα=
,②
又∵0<α<
,0<β<
,
∴-
<α-β<
.
由①得α-β=±
,由②得α=
.
由α、β为锐角,∴β=
.
从而2β-α=
π.
(2)由
=
+
可得
,
③2+④2得cosα-sinα=
,∴2sinαcosα=
.
又∵2sinαcosα=
=
=
,
∴3tan2α-8tanα+3=0.
因为cosα-sinα>0 所以cosα>sinα又因为α为锐角,所以tanα<1,
又∵α为锐角,∴tanα>0,
∴tanα=
=
.
| a |
| b |
=cosαcosβ+sinαsinβ
=cos(α-β)=
| ||
| 2 |
| a |
| c |
| 1 |
| 2 |
| 1 |
| 2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| ||
| 4 |
又∵0<α<
| π |
| 2 |
| π |
| 2 |
∴-
| π |
| 2 |
| π |
| 2 |
由①得α-β=±
| π |
| 4 |
| π |
| 6 |
由α、β为锐角,∴β=
| 5π |
| 12 |
从而2β-α=
| 2 |
| 3 |
(2)由
| a |
| b |
| c |
|
③2+④2得cosα-sinα=
| 1 |
| 2 |
| 3 |
| 4 |
又∵2sinαcosα=
| 2sinαcosα |
| sin2α+cos2α |
=
| 2tanα |
| tan2α+1 |
| 3 |
| 4 |
∴3tan2α-8tanα+3=0.
因为cosα-sinα>0 所以cosα>sinα又因为α为锐角,所以tanα<1,
又∵α为锐角,∴tanα>0,
∴tanα=
8-
| ||
| 6 |
=
4-
| ||
| 3 |
练习册系列答案
相关题目