题目内容
设数列{an}满足an≠0,a1=1,an=(1-2n)anan-1+an-1(n≥2),数列{an}的前n项和为Sn.
(1)求数列{an}的通项公式;
(2)求证:当n≥2时,
<Sn<2;
(3)试探究:当n≥2时,是否有
<Sn<
?说明理由.
(1)求数列{an}的通项公式;
(2)求证:当n≥2时,
| n |
| n+1 |
(3)试探究:当n≥2时,是否有
| 6n |
| (n+1)(2n+1) |
| 5 |
| 3 |
(1)∵an≠0
∴anan-1≠0(n≥2)
∴
=
+
,
即
=(1-2n)+
即有
-
=2n-1,
∴
=
+(
-
)+(
-
)+…+(
-
)=1+3+5+7+…+(2n-1)=
=n2(n≥2)
又
=1也适合上式,
∴an=
.
(2)证明:∵an=
∴Sn=a1+a2+…+an=1+
+
+…+
∵当n≥2时,
<
=
-
∴1+
+
+…+
<1+[(1-
)+(
-
)+…+(
-
)]=2-
<2.
又∵
>
=
-
∴Sn>(1-
)+(
-
)+…+(
-
)=1-
=
∴当n≥2时,
<Sn<2.
(3)∵
=
<
=2(
-
)
∴1+
+
+…+
<1+2[(
-
)+(
-
)+…+(
-
)]
=
-
<
当n≥2时,要Sn>
只需
>
即需2n+1>6,显然这在n≥3时成立
而S2=1+
=
,当n≥2时
=
=
显然
>
即当n≥2时Sn>
也成立
综上所述:当n≥2时,有
<Sn<
.
∴anan-1≠0(n≥2)
∴
| an |
| anan-1 |
| (1-2n)anan-1 |
| anan-1 |
| an-1 |
| anan-1 |
即
| 1 |
| an-1 |
| 1 |
| an |
| 1 |
| an |
| 1 |
| an-1 |
∴
| 1 |
| an |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a1 |
| 1 |
| a3 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| an-1 |
| n(1+2n-1) |
| 2 |
又
| 1 |
| a1 |
∴an=
| 1 |
| n2 |
(2)证明:∵an=
| 1 |
| n2 |
∴Sn=a1+a2+…+an=1+
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
∵当n≥2时,
| 1 |
| n2 |
| 1 |
| (n-1)n |
| 1 |
| n-1 |
| 1 |
| n |
∴1+
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
| 1 |
| n+1 |
| 1 |
| n+1 |
又∵
| 1 |
| n2 |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴Sn>(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
| n |
| n+1 |
∴当n≥2时,
| n |
| n+1 |
(3)∵
| 1 |
| n2 |
| 4 |
| 4n2 |
| 4 |
| (2n-1)(2n+1) |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴1+
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
=
| 5 |
| 3 |
| 2 |
| 2n+1 |
| 5 |
| 3 |
当n≥2时,要Sn>
| 6n |
| (n+1)(2n+1) |
| n |
| n+1 |
| 6n |
| (n+1)(2n+1) |
即需2n+1>6,显然这在n≥3时成立
而S2=1+
| 1 |
| 4 |
| 5 |
| 4 |
| 6n |
| (n+1)(2n+1) |
| 6×2 |
| (2+1)(4+1) |
| 4 |
| 5 |
| 5 |
| 4 |
| 4 |
| 5 |
即当n≥2时Sn>
| 6n |
| (n+1)(2n+1) |
综上所述:当n≥2时,有
| 6n |
| (n+1)(2n+1) |
| 5 |
| 3 |
练习册系列答案
相关题目
设数列{an}满足a1=1,a2+a4=6,且对任意n∈N*,函数f(x)=(an-an+1+an+2)x+an+1?cosx-an+2sinx满足f′(
)=0若cn=an+
,则数列{cn}的前n项和Sn为( )
| π |
| 2 |
| 1 |
| 2an |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|