题目内容

设集合A={x|x2+2x-3>0},集合B={x|x2-2ax-1≤0,a>0}.若A∩B中恰含有一个整数,则实数a的取值范围是(  )
分析:先求解一元二次不等式化简集合A,B,然后分析集合B的左端点的大致位置,结合A∩B中恰含有一个整数得集合B的右端点的范围,列出无理不等式组后进行求解.
解答:解:由x2+2x-3>0,得:x<-3或x>1.
由x2-2ax-1≤0,得:a-
a2+1
≤x≤a+
a2+1

所以,A={x|x2+2x-3>0}={x|x<-3或x>1},B={x|x2-2ax-1≤0,a>0}={x|a-
a2+1
≤x≤a+
a2+1
}.
因为a>0,所以a+1>
a2+1
,则a-
a2+1
>-1
且小于0.
由A∩B中恰含有一个整数,所以2≤a+
a2+1
<3

a+
a2+1
≥2
a+
a2+1
<3
,也就是
a2+1
≥2-a①
a2+1
<3-a②

解①得:a
3
4
,解②得:a
4
3

所以,满足A∩B中恰含有一个整数的实数a的取值范围是[
3
4
4
3
)

故选B.
点评:本题考查了交集及其运算,考查了数学转化思想,训练了无理不等式的解法,求解无理不等式是该题的一个难点.此题属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网