题目内容

6.不等式|3x-1|>x的解集是(-∞,$\frac{1}{4}$)∪($\frac{1}{2}$,+∞).

分析 原不等式等价于3x-1>x ①,或3x-1<-x ②,分别求得①②的解集,再取并集,即得所求.

解答 解:原不等式等价于3x-1>x ①,或3x-1<-x ②.
解①求得x>$\frac{1}{2}$,解②求得x<$\frac{1}{4}$,故不等式|3x-1|>x的解集是(-∞,$\frac{1}{4}$)∪($\frac{1}{2}$,+∞),
故答案为:(-∞,$\frac{1}{4}$)∪($\frac{1}{2}$,+∞).

点评 本题主要考查绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网