题目内容
已知函数f(x)=cos(2x-
)+sin2x-cos2x.
(Ⅰ)求函数f(x)的最小正周期及图象的对称轴方程;
(Ⅱ)设函数g(x)=[f(x)]2+f(x),求g(x)的值域.
| π |
| 3 |
(Ⅰ)求函数f(x)的最小正周期及图象的对称轴方程;
(Ⅱ)设函数g(x)=[f(x)]2+f(x),求g(x)的值域.
(Ⅰ)f(x)=
cos2x+
sin2x+sin2x-cos2x
=
cos2x+
sin2x-cos2x
=sin(2x-
)
∴周期T=
=π,
由2x-
=kπ+
(k∈Z),得x=
+
(k∈Z)
∴函数图象的对称轴方程为x=
+
(k∈Z).
(Ⅱ)g(x)=[f(x)]2+f(x)
=sin2(2x-
)+sin(2x-
)
=[sin(2x-
)+
]2-
.
当sin(2x-
)=-
时,g(x)取得最小值-
当sin(2x-
)=1时,g(x)取得最大值2,
所以g(x)的值域为[-
, 2].
| 1 |
| 2 |
| ||
| 2 |
=
| 1 |
| 2 |
| ||
| 2 |
=sin(2x-
| π |
| 6 |
∴周期T=
| 2π |
| 2 |
由2x-
| π |
| 6 |
| π |
| 2 |
| kπ |
| 2 |
| π |
| 3 |
∴函数图象的对称轴方程为x=
| kπ |
| 2 |
| π |
| 3 |
(Ⅱ)g(x)=[f(x)]2+f(x)
=sin2(2x-
| π |
| 6 |
| π |
| 6 |
=[sin(2x-
| π |
| 6 |
| 1 |
| 2 |
| 1 |
| 4 |
当sin(2x-
| π |
| 6 |
| 1 |
| 2 |
| 1 |
| 4 |
当sin(2x-
| π |
| 6 |
所以g(x)的值域为[-
| 1 |
| 4 |
练习册系列答案
相关题目