题目内容
已知数列{an}的前n项和为Sn,并且满足a1=2,nan+1=Sn+n(n+1).
(1)求数列{an}的通项公式an;
(2)设Tn为数列{
}的前n项和,求Tn.
(1)求数列{an}的通项公式an;
(2)设Tn为数列{
| an |
| 2n |
(1)nan+1-(n-1)an=an+2n,an+1-an=2(n≥2)a1=2,a2=s1+2,
∴a2-a1=2,所以{an}等差an=2n
(2)
=
=
,Tn=1+
+
+…+
Tn=
+
+…+
+
Tn=2-(n+2)
,Tn=4-
∴a2-a1=2,所以{an}等差an=2n
(2)
| an |
| 2n |
| 2n |
| 2n |
| n |
| 2n-1 |
| 2 |
| 2 |
| 3 |
| 22 |
| n |
| 2n-1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 2 |
| 22 |
| n-1 |
| 2n-1 |
| n |
| 2n |
| 1 |
| 2 |
| 1 |
| 2n |
| n+2 |
| 2n-1 |
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |