题目内容
(Ⅰ)求对角线AC1的长.
(Ⅱ)求直线BD1和AC的夹角.
分析:(Ⅰ)直接根据向量的加法把所求问题分解,再平方计算出模长的平方,进而求出结论;
(Ⅱ)先把两个向量转化,并分别求出模长以及其数量积,再代入向量的夹角计算公式即可.
(Ⅱ)先把两个向量转化,并分别求出模长以及其数量积,再代入向量的夹角计算公式即可.
解答:解:(Ⅰ)因为
=
+
+
;
∴
2=(
+
+
)2
=
2+
2+
2+2
•
+2
•
+2
•
=b2+a2+a2+2abcos120°+2abcos120°+2a•acos90°
=b2+2a2-2ab.
∴AC1=
.
(Ⅱ)∵
=
+
,
=
+
+
;
∴|
|=
=
=
=
a;
|
|=
=
=
=
.
•
=(
+
)•(
+
+
)
=
•
+
•
+
•
+
•
+
•
+
•
=ab;
∴cos<
,
>=
=
.
所以直线BD1和AC的夹角为:arccos
| AC1 |
| AA 1 |
| A 1B1 |
| B1C1 |
∴
| AC 1 |
| AA 1 |
| A 1B1 |
| B1C1 |
=
| AA 1 |
| A1B1 |
| B 1C1 |
| AA 1 |
| A 1B1 |
| AA 1 |
| B 1C1 |
| A 1B1 |
| B1C1 |
=b2+a2+a2+2abcos120°+2abcos120°+2a•acos90°
=b2+2a2-2ab.
∴AC1=
| b2+2a 2-2ab |
(Ⅱ)∵
| AC |
| AB |
| BC |
| D1B |
| D1A1 |
| A1B1 |
| B1B |
∴|
| AC |
(
|
|
| a2+a2+2a 2cos90° |
| 2 |
|
| D1B |
(
|
=
|
=
| a2+b2+a2+2abcos60°+2a 2cos90°+2abcos120° |
| 2a2+b2 |
| AC |
| D1B |
| AB |
| BC |
| D1A1 |
| A1B1 |
| B1B |
=
| AB |
| D1A1 |
| AB |
| A1B1 |
| AB |
| B1B |
| BC |
| D1A1 |
| BC |
| A1B1 |
| BC |
| B1B |
∴cos<
| D1B |
| AC |
| ab | ||||
|
| b | ||
|
所以直线BD1和AC的夹角为:arccos
| b | ||
|
点评:本题主要考察异面直线所成的角以及两点间的距离计算.注意在利用向量求两直线的夹角时,要的是小于等于90度的角,避免出错.
练习册系列答案
相关题目