题目内容
已知数列{an}满足a1=a2=2,an+1=an+2an-1(n≥2).(1)求数列{an}的通项公式;
(2)当n≥2时,求证:
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
(3)若函数f(x)满足:f(1)=a1,f(n+1)=[f(n)]2+f(n)(n∈N*),求证:
| n |
| k=1 |
| 1 |
| f(k)+1 |
| 1 |
| 2 |
分析:(1)根据an+1=an+2an-1可得an+1+an=2(an+an-1)进而推知{an+1+an}是等比数列,根据等比数列的通项公式可得{an+1+an}通项公式;同理可推知∴{an+1-2an}为等比数列,进而求得其通项公式.两个通项公式相减即可得到的an通项公式.
(2)首先根据
+
=
(
+
)<
(
+
),进而可推知,
+
+…+
<
(1+
+
+…+
)=3-
<3
(3)根据f(n+1)=[f(n)]2+f(n),可知f(n+1)-f(n)=[f(n)]2≥0,进而推断f(n+1)≥f(n)≥f(n-1)…≥f(1)=2>0;对f(n+1)=[f(n)]2+f(n)变形可知
=
=
=
-
代入
得
=
-
<
=
,原式得证.
(2)首先根据
| 1 |
| an-1 |
| 1 |
| an |
| 3 |
| 2 |
| 1 |
| 2n-1+1 |
| 1 |
| 2n-1 |
| 3 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 3 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n |
| 3 |
| 2n |
(3)根据f(n+1)=[f(n)]2+f(n),可知f(n+1)-f(n)=[f(n)]2≥0,进而推断f(n+1)≥f(n)≥f(n-1)…≥f(1)=2>0;对f(n+1)=[f(n)]2+f(n)变形可知
| 1 |
| f(n+1) |
| 1 |
| [f(n)]2+f(n) |
| 1 |
| f(n)[f(n)+1] |
| 1 |
| f(n) |
| 1 |
| f(n)+1 |
| n |
| k=1 |
| 1 |
| f(k)+1 |
| n |
| k=1 |
| 1 |
| f(k)+1 |
| 1 |
| f(1) |
| 1 |
| f(n+1) |
| 1 |
| f(1) |
| 1 |
| 2 |
解答:解:(1)∵an+1=an+2an-1,∴an+1+an=2(an+an-1)(n≥2)
∴{an+1+an}是2为公比,a1+a2=4为首项的等比数列.
故an+1+an=2n+1①
又由an+1=an+2an-1得:an+1-2an=-(an-2an-1)(n≥2)
∴{an+1-2an}是以-1为公比,a1-2a2=-2为首项的等比数列
故an+1-2an=2×(-1)n②
①-②得:3an=2[2n-(-1)n](n≥2)
又a1=2也适合上式
∴an=
[2n-(-1)n]
(2)当n为偶数时,
+
=
(
+
)=
<
=
(
+
)(n≥2)
∴
+
+…+
<
(1+
+
+…+
)=3-
<3
当n为奇数时,由(1)可知
+
+…+
<
+
+…+
+
<3
∴原式得证.
(3)∵f(n+1)=[f(n)]2+f(n)
∴f(n+1)-f(n)=[f(n)]2≥0
∴f(n+1)≥f(n)
∴f(n+1)≥f(n)≥f(n-1)…≥f(1)=2>0
又
=
=
=
-
∴
=
-
故
=[
-
]+[
-
]+…+[
-
]=
-
<
=
∴{an+1+an}是2为公比,a1+a2=4为首项的等比数列.
故an+1+an=2n+1①
又由an+1=an+2an-1得:an+1-2an=-(an-2an-1)(n≥2)
∴{an+1-2an}是以-1为公比,a1-2a2=-2为首项的等比数列
故an+1-2an=2×(-1)n②
①-②得:3an=2[2n-(-1)n](n≥2)
又a1=2也适合上式
∴an=
| 2 |
| 3 |
(2)当n为偶数时,
| 1 |
| an-1 |
| 1 |
| an |
| 3 |
| 2 |
| 1 |
| 2n-1+1 |
| 1 |
| 2n-1 |
| 3 |
| 2 |
| 2n+2n-1 |
| 2n-12n+2n-1-1 |
| 3 |
| 2 |
| 2n+2n-1 |
| 2n2n-1 |
| 3 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n |
∴
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 3 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n |
| 3 |
| 2n |
当n为奇数时,由(1)可知
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| an+1 |
∴原式得证.
(3)∵f(n+1)=[f(n)]2+f(n)
∴f(n+1)-f(n)=[f(n)]2≥0
∴f(n+1)≥f(n)
∴f(n+1)≥f(n)≥f(n-1)…≥f(1)=2>0
又
| 1 |
| f(n+1) |
| 1 |
| [f(n)]2+f(n) |
| 1 |
| f(n)[f(n)+1] |
| 1 |
| f(n) |
| 1 |
| f(n)+1 |
∴
| 1 |
| f(n)+1 |
| 1 |
| f(n) |
| 1 |
| f(n+1) |
故
| n |
| k=1 |
| 1 |
| f(k)+1 |
| 1 |
| f(1) |
| 1 |
| f(2) |
| 1 |
| f(2) |
| 1 |
| f(3) |
| 1 |
| f(n) |
| 1 |
| f(n+1) |
| 1 |
| f(1) |
| 1 |
| f(n+1) |
| 1 |
| f(1) |
| 1 |
| 2 |
点评:本题主要考查了等比关系的确定问题.本题的关键是充分利用了不等式的传递性等性质.
练习册系列答案
相关题目