题目内容

已知数列{an}满足a1=a2=2,an+1=an+2an-1(n≥2).
(1)求数列{an}的通项公式;
(2)当n≥2时,求证:
1
a1
+
1
a2
+…+
1
an
<3

(3)若函数f(x)满足:f(1)=a1,f(n+1)=[f(n)]2+f(n)(n∈N*),求证:
n
k=1
1
f(k)+1
1
2
分析:(1)根据an+1=an+2an-1可得an+1+an=2(an+an-1)进而推知{an+1+an}是等比数列,根据等比数列的通项公式可得{an+1+an}通项公式;同理可推知∴{an+1-2an}为等比数列,进而求得其通项公式.两个通项公式相减即可得到的an通项公式.
(2)首先根据
1
an-1
+
1
an
=
3
2
(
1
2n-1+1
+
1
2n-1
)
3
2
(
1
2n-1
+
1
2n
)
,进而可推知,
1
a1
+
1
a2
+…+
1
an
3
2
(1+
1
2
+
1
22
+…+
1
2n
)
=3-
3
2n
<3
(3)根据f(n+1)=[f(n)]2+f(n),可知f(n+1)-f(n)=[f(n)]2≥0,进而推断f(n+1)≥f(n)≥f(n-1)…≥f(1)=2>0;对f(n+1)=[f(n)]2+f(n)变形可知
1
f(n+1)
=
1
[f(n)]2+f(n)
=
1
f(n)[f(n)+1]
=
1
f(n)
-
1
f(n)+1
代入
n
k=1
1
f(k)+1
n
k=1
1
f(k)+1
=
1
f(1)
-
1
f(n+1)
1
f(1)
=
1
2
,原式得证.
解答:解:(1)∵an+1=an+2an-1,∴an+1+an=2(an+an-1)(n≥2)
∴{an+1+an}是2为公比,a1+a2=4为首项的等比数列.
故an+1+an=2n+1
又由an+1=an+2an-1得:an+1-2an=-(an-2an-1)(n≥2)
∴{an+1-2an}是以-1为公比,a1-2a2=-2为首项的等比数列
故an+1-2an=2×(-1)n
①-②得:3an=2[2n-(-1)n](n≥2)
又a1=2也适合上式
∴an=
2
3
[2n-(-1)
n]
(2)当n为偶数时,
1
an-1
+
1
an
=
3
2
(
1
2n-1+1
+
1
2n-1
)
=
3
2
2n+2n-1
2n-12n+2n-1-1
3
2
2n+2n-1
2n2n-1
=
3
2
(
1
2n-1
+
1
2n
)
(n≥2)
1
a1
+
1
a2
+…+
1
an
3
2
(1+
1
2
+
1
22
+…+
1
2n
)
=3-
3
2n
<3
当n为奇数时,由(1)可知
1
a1
+
1
a2
+…+
1
an
1
a1
+
1
a2
+…+
1
an
+
1
an+1
<3
∴原式得证.
(3)∵f(n+1)=[f(n)]2+f(n)
∴f(n+1)-f(n)=[f(n)]2≥0
∴f(n+1)≥f(n)
∴f(n+1)≥f(n)≥f(n-1)…≥f(1)=2>0
1
f(n+1)
=
1
[f(n)]2+f(n)
=
1
f(n)[f(n)+1]
=
1
f(n)
-
1
f(n)+1

1
f(n)+1
=
1
f(n)
-
1
f(n+1)

n
k=1
1
f(k)+1
=[
1
f(1)
-
1
f(2)
]+[
1
f(2)
-
1
f(3)
]
+…+[
1
f(n)
-
1
f(n+1)
]
=
1
f(1)
-
1
f(n+1)
1
f(1)
=
1
2
点评:本题主要考查了等比关系的确定问题.本题的关键是充分利用了不等式的传递性等性质.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网