题目内容

已知等差数列{an}的前3项和为6,前8项和为-4.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=(4-an)qn-1(q≠0,n∈N*),求数列{bn}的前n项和Sn
(1)设{an}的公差为d,
由已知得
3a1+3d=6
8a1+28d=-4

解得a1=3,d=-1
故an=3+(n-1)(-1)=4-n;
(2)由(1)的解答得,bn=n•qn-1,于是
Sn=1•q0+2•q1+3•q2+…+(n-1)•qn-1+n•qn
若q≠1,将上式两边同乘以q,得
qSn=1•q1+2•q2+3•q3+…+(n-1)•qn+n•qn+1
将上面两式相减得到
(q-1)Sn=nqn-(1+q+q2+…+qn-1
=nqn-
qn-1
q-1

于是Sn=
nqn+1-(n+1)qn+1
(q-1)2

若q=1,则Sn=1+2+3+…+n=
n(n+1)
2

所以,Sn=
nqn+1-(n+1)qn+1
(q-1)2
(q≠1)
n(n+1)
2
(q=1)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网