题目内容
已知数列{an}满足a1=2,an+1=2an+(n-2)(n-1)(n∈N*)
(1)是否存在常数p,q,r,使数列{an+pn2+qn+r}是等比数列,若存在求出p,q,r的值;若不存在,说明理由;
(2)设数列{bn}满足bn=
,证明:b1+b2+…+bn<
.
(1)是否存在常数p,q,r,使数列{an+pn2+qn+r}是等比数列,若存在求出p,q,r的值;若不存在,说明理由;
(2)设数列{bn}满足bn=
| 1 |
| 2n+1-an |
| 3 |
| 2 |
(1)设an+1+p(n+1)2+q(n+1)+r=2(an+pn2+qn+r)
∴an+1=2an+pn2+(q-2p)n+r-p-q
由an+1=2an+n2-3n+2∴p=1,q=-1,r=2.4分
∴{an+n2-n+2}是以首项为4,公比为2的等比数列.6分
(2)∵an+n2-n+2=4•2n-1=2n+17′
∴bn=
=
<
=
=
-
(n≥2)9分
∴n=1时,b1=
<
10′n≥2时,b1+b2+b3++bn=b1+(
-
+
-
++
-
)=
+1-
<
综上:b1+b2+b3++bn<
(n∈N*)12分
∴an+1=2an+pn2+(q-2p)n+r-p-q
由an+1=2an+n2-3n+2∴p=1,q=-1,r=2.4分
∴{an+n2-n+2}是以首项为4,公比为2的等比数列.6分
(2)∵an+n2-n+2=4•2n-1=2n+17′
∴bn=
| 1 |
| 2n+1-an |
| 1 |
| n2-n+2 |
| 1 |
| n2-n |
| 1 |
| (n-1)n |
| 1 |
| n-1 |
| 1 |
| n |
∴n=1时,b1=
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
| 1 |
| n |
| 1 |
| 2 |
| 1 |
| n |
| 3 |
| 2 |
综上:b1+b2+b3++bn<
| 3 |
| 2 |
练习册系列答案
相关题目