题目内容
已知函数f(x)=2+
,数列{an}满足a1=1,
=f(an)(n∈N*).
(1)证明:数列{
}是等差数列;
(2)记Sn=a1a2+a2a3+…anan+1,求Sn.
| 1 |
| x |
| 1 |
| an+1 |
(1)证明:数列{
| 1 |
| an |
(2)记Sn=a1a2+a2a3+…anan+1,求Sn.
分析:(1)由f(x)=2+
,
=f(an)联立可得递推式
=2+
,移向后即可得到结论;
(2)由数列{
}是等差数列求出an,把an代入Sn=a1a2+a2a3+…anan+1,利用裂项相消可求前n项和.
| 1 |
| x |
| 1 |
| an+1 |
| 1 |
| an+1 |
| 1 |
| an |
(2)由数列{
| 1 |
| an |
解答:(1)证明:因为f(x)=2+
,
由
=f(an)得,
=2+
,
即
-
=2(n∈N*),
所以,数列{
}是公差为2的等差数列;
(2)解:由数列{
}是公差为2的等差数列,
=1.
所以
=1+2(n-1)=2n-1.
则an=
.
anan+1=
=
(
-
)
所以,Sn=a1a2+a2a3+…+anan+1
=
(1-
)+
(
-
)+
(
-
)+…+
(
-
)
=
(1-
+
-
+
-
+…+
-
)
=
(1-
)
=
.
| 1 |
| x |
由
| 1 |
| an+1 |
| 1 |
| an+1 |
| 1 |
| an |
即
| 1 |
| an+1 |
| 1 |
| an |
所以,数列{
| 1 |
| an |
(2)解:由数列{
| 1 |
| an |
| 1 |
| a1 |
所以
| 1 |
| an |
则an=
| 1 |
| 2n-1 |
anan+1=
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
所以,Sn=a1a2+a2a3+…+anan+1
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
=
| 1 |
| 2 |
| 1 |
| 2n+1 |
=
| n |
| 2n+1 |
点评:本题考查了数列的函数特性,考查了等差数列的通项公式,训练了裂项相消求数列的前n项和,此题是中档题.
练习册系列答案
相关题目