题目内容

已知函数f(x)=2+
1
x
,数列{an}满足a1=1,
1
an+1
=f(an)(n∈N*).
(1)证明:数列{
1
an
}是等差数列;
(2)记Sn=a1a2+a2a3+…anan+1,求Sn
分析:(1)由f(x)=2+
1
x
1
an+1
=f(an)联立可得递推式
1
an+1
=2+
1
an
,移向后即可得到结论;
(2)由数列{
1
an
}是等差数列求出an,把an代入Sn=a1a2+a2a3+…anan+1,利用裂项相消可求前n项和.
解答:(1)证明:因为f(x)=2+
1
x

1
an+1
=f(an)得,
1
an+1
=2+
1
an

1
an+1
-
1
an
=2
(n∈N*),
所以,数列{
1
an
}是公差为2的等差数列;
(2)解:由数列{
1
an
}是公差为2的等差数列,
1
a1
=1

所以
1
an
=1+2(n-1)=2n-1

an=
1
2n-1

anan+1=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)

所以,Sn=a1a2+a2a3+…+anan+1
=
1
2
(1-
1
3
)+
1
2
(
1
3
-
1
5
)+
1
2
(
1
5
-
1
7
)
+…+
1
2
(
1
2n-1
-
1
2n+1
)

=
1
2
(1-
1
3
+
1
3
-
1
5
+
1
5
-
1
7
+…+
1
2n-1
-
1
2n+1
)

=
1
2
(1-
1
2n+1
)

=
n
2n+1
点评:本题考查了数列的函数特性,考查了等差数列的通项公式,训练了裂项相消求数列的前n项和,此题是中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网