题目内容
在数列{an}中,
.
(Ⅰ)设
,证明:数列{bn}是等差数列;
(Ⅱ)求数列
的前n项和Sn.
解:(Ⅰ)由已知an+1=3an+3n得:
bn+1=
=
=
+1
=bn+1,
又b1=a1=1,因此{bn}是首项为1,公差为1的等差数列…(6分)
(Ⅱ)由(1)得
=n,
∴
=3n-1,…(8分)
∴Sn=1+31+32+…+3n-1=
=
…(12分)
分析:(Ⅰ)依题意可求得bn+1=bn+1,由等差数列的定义即可得证数列{bn}是等差数列;
(Ⅱ)可求得
=3n-1,利用等比数列的求和公式即可求得数列
的前n项和Sn.
点评:本题考查等差数列的证明,考查等比数列的求和,考查推理与运算能力,属于中档题.
bn+1=
=
=
=bn+1,
又b1=a1=1,因此{bn}是首项为1,公差为1的等差数列…(6分)
(Ⅱ)由(1)得
∴
∴Sn=1+31+32+…+3n-1=
分析:(Ⅰ)依题意可求得bn+1=bn+1,由等差数列的定义即可得证数列{bn}是等差数列;
(Ⅱ)可求得
点评:本题考查等差数列的证明,考查等比数列的求和,考查推理与运算能力,属于中档题.
练习册系列答案
相关题目