题目内容

 12. 如图所示,已知长方体ABCD—A1B1C1D1中,AB=BC=2,AA1=4,

E是棱CC1上的点,且BE⊥B1C.

(1)求CE的长;

(2)求证:A1C⊥平面BED;

(3)求A1B与平面BDE所成角的正弦值.

(1) CE=1 (2)证明略(3)A1B与平面BDE所成角的正弦值为


解析:

(1)  如图所示,以D为原点,DA、DC、DD1所在直线分别为x、y、z轴建立空间直角坐标系D—xyz.

∴D(0,0,0),A(2,0,0),B(2,2,0),

C(0,2,0),A1(2,0,4),

B1(2,2,4),C1(0,2,4),D1(0,0,4).

设E点坐标为(0,2,t),则=(-2,0,t),=(-2,0,-4).

∵BE⊥B1C,

·=4+0-4t=0.∴t=1,故CE=1.

(2)由(1)得,E(0,2,1),=(-2,0,1),

=(-2,2,-4),=(2,2,0),

·=4+0-4=0,

·=-4+4+0=0.

,即A1C⊥DB,A1C⊥BE,

又∵DB∩BE=B,∴A1C⊥平面BDE.

即A1C⊥平面BED.

(3)  由(2)知=(-2,2,-4)是平面BDE的一个法向量.又=(0,2,-4),

∴cos〈,〉==.

∴A1B与平面BDE所成角的正弦值为.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网