题目内容
已知x1、x2是方程2x2+3x-4=0的两个根,利用根与系数的关系,求下列各式子的值
(1)x1+x2
(2)x1•x2
(3)
+
(4)x12+x22
(5)(x1+1)(x2+1)
(1)x1+x2
(2)x1•x2
(3)
| 1 |
| x1 |
| 1 |
| x2 |
(4)x12+x22
(5)(x1+1)(x2+1)
分析:由题意利用一元二次方程根与系数的关系可得(1)x1+x2=-
,计算求得结果.
(2)x1•x2=
,计算求得结果.
(3)
+
=
,计算求得结果.
(4)x12+x22 =(x1+x2)2-2x1•x2,计算求得结果.
(5)(x1+1)(x2+1)=x1•x2+(x1+x2)+1,计算求得结果.
| b |
| a |
(2)x1•x2=
| c |
| a |
(3)
| 1 |
| x1 |
| 1 |
| x2 |
| x1+x2 |
| x1•x2 |
(4)x12+x22 =(x1+x2)2-2x1•x2,计算求得结果.
(5)(x1+1)(x2+1)=x1•x2+(x1+x2)+1,计算求得结果.
解答:解:由题意利用一元二次方程根与系数的关系可得(1)x1+x2=-
=-
,
(2)x1•x2=
=
=-2,
(3)
+
=
=
=
,
(4)x12+x22 =(x1+x2)2-2x1•x2=
-(-4)=
,
(5)(x1+1)(x2+1)=x1•x2+(x1+x2)+1=-2+(-
)+1=-
.
| b |
| a |
| 3 |
| 2 |
(2)x1•x2=
| c |
| a |
| -4 |
| 2 |
(3)
| 1 |
| x1 |
| 1 |
| x2 |
| x1+x2 |
| x1•x2 |
-
| ||
| -2 |
| 3 |
| 4 |
(4)x12+x22 =(x1+x2)2-2x1•x2=
| 9 |
| 4 |
| 25 |
| 4 |
(5)(x1+1)(x2+1)=x1•x2+(x1+x2)+1=-2+(-
| 3 |
| 2 |
| 5 |
| 2 |
点评:本题主要考查一元二次方程根与系数的关系,属于中档题.
练习册系列答案
相关题目