题目内容
设0<θ<
,已知a1=2cosθ,an+1=
(n∈N*),猜想an等于( )
| π |
| 2 |
| 2+an |
A、2cos
| ||
B、2cos
| ||
C、2cos
| ||
D、2sin
|
分析:利用排除法分别进行验证排除即可得到结论.
解答:解:当n=1时,A选项2cos
=2cos
,∴排除A.
当n=2时,C选项2cos
=2cos
,∴排除C.
a2=
=
=2sin
,此时D选项2sin
=2sin
,∴排除D.
故选:B.
| θ |
| 2n |
| θ |
| 2 |
当n=2时,C选项2cos
| θ |
| 2n+1 |
| θ |
| 4 |
a2=
| 2+a1 |
| 2+2cosθ |
| θ |
| 2 |
| θ |
| 2n |
| θ |
| 4 |
故选:B.
点评:本题主要考查数列的通项公式的求解,利用已知条件进行排除即可,比较基础.
练习册系列答案
相关题目