题目内容

如图,在三棱锥中,底面

分别在棱上,且

(Ⅰ)求证:平面

(Ⅱ)当的中点时,求与平面

所成的角的余弦值.

(Ⅰ)∵PA⊥底面ABC,BC面ABC    ∴PA⊥BC.

,∴AC⊥BC.

∵PA与AC相交     ∴BC⊥平面PAC.                …   …  5分

(Ⅱ)∵D为PB的中点,DE//BC,∴

又由(Ⅰ)知,BC⊥平面PAC,

∴DE⊥平面PAC,垂足为点E.

∴∠DAE是AD与平面PAC所成的角,……8分

∵PA⊥底面ABC,∴PA⊥AB,又PA=AB,

∴△ABP为等腰直角三角形,∴

∴在Rt△ABC中,,∴.

∴在Rt△ADE中,

.与平面所成的角的余弦值为.        ……14分

【解法2】如图,以A为原煤点建立空间直角坐标系

        设,由已知可得

       .

       (Ⅰ)∵

,∴BC⊥AP.

又∵,∴BC⊥AC,∴BC⊥平面PAC.

(Ⅱ)∵D为PB的中点,DE//BC,∴E为PC的中点,

∴又由(Ⅰ)知,BC⊥平面PAC,∴∴DE⊥平面PAC,垂足为点E.

∴∠DAE是AD与平面PAC所成的角,

.

与平面所成的余弦值为.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网