题目内容
已知函数f(x)=sin(x+
)+cos(x-
),x∈R,求f(x)的最小正周期和在[0,
]上的最小值和最大值.
| 7π |
| 4 |
| 3π |
| 4 |
| π |
| 2 |
f(x)=sinxcos
+cosxsin
+cosxcos
+sinxsin
=
sinx-
cosx-
cosx+
sinx
=
(sinx-cosx)
=2sin(x-
),
∵ω=1,∴T=2π;
∵x∈[0,
],∴x-
∈[-
,
],
∴-
≤sin(x-
)≤
,即-
≤2sin(x-
)≤
,
则函数在[0,
]上的最大值为
,最小值为-
.
| 7π |
| 4 |
| 7π |
| 4 |
| 3π |
| 4 |
| 3π |
| 4 |
=
| ||
| 2 |
| ||
| 2 |
| ||
| 2 |
| ||
| 2 |
=
| 2 |
=2sin(x-
| π |
| 4 |
∵ω=1,∴T=2π;
∵x∈[0,
| π |
| 2 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
∴-
| ||
| 2 |
| π |
| 4 |
| ||
| 2 |
| 2 |
| π |
| 4 |
| 2 |
则函数在[0,
| π |
| 2 |
| 2 |
| 2 |
练习册系列答案
相关题目