题目内容
已知数列{an}:
,
+
,
+
+
,
+
+
+
,…,那么数列{bn}={
}前n项的和为( )
| 1 |
| 2 |
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 4 |
| 2 |
| 4 |
| 3 |
| 4 |
| 1 |
| 5 |
| 2 |
| 5 |
| 3 |
| 5 |
| 4 |
| 5 |
| 1 |
| anan+1 |
分析:先求得数列{an}的通项公式为an=
+
+
+…+
=
,继而数列{bn}={
}的通项公式为bn=
=
•
=4(
-
),经裂项后,前n项的和即可计算.
| 1 |
| n+1 |
| 2 |
| n+1 |
| 3 |
| n+1 |
| n |
| n+1 |
| n |
| 2 |
| 1 |
| anan+1 |
| 1 |
| anan+1 |
| 2 |
| n |
| 2 |
| n+1 |
| 1 |
| n |
| 1 |
| n+1 |
解答:解:数列{an}的通项公式为an=
+
+
+…+
=
=
数列{bn}={
}的通项公式为bn=
=
•
=4(
-
)
其前n项的和为4[(
-
)+(
-
)+(
-
)+…+(
-
)]=4(1-
)
故选A
| 1 |
| n+1 |
| 2 |
| n+1 |
| 3 |
| n+1 |
| n |
| n+1 |
| n(n+1) |
| 2(n+1) |
| n |
| 2 |
数列{bn}={
| 1 |
| anan+1 |
| 1 |
| anan+1 |
| 2 |
| n |
| 2 |
| n+1 |
| 1 |
| n |
| 1 |
| n+1 |
其前n项的和为4[(
| 1 |
| 1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
故选A
点评:本题考查了数列求和的两种方法:公式法和裂项相消法.属于基础题.
练习册系列答案
相关题目