题目内容
已知数列{an}中各项均为正数,Sn是数列{an}的前n项和,且Sn=
(a
+an).
(1)求数列{an}的通项公式
(2)对n∈N*,试比较
+
+…+
与a2的大小.
| 1 |
| 2 |
2 n |
(1)求数列{an}的通项公式
(2)对n∈N*,试比较
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
分析:由Sn=
(an2+an),{an}中各项均为正数解得a1=1,当n≥2时,Sn-Sn-1=an=
(an2+an)-
(an-12+an-1),由此能求出数列{an}的通项公式.
(2)对n∈N*,Sn是数列{an}的前n项和,Sn=
,
=
=2(
-
),由此利用裂项求和法能够推导出
+
+…+
<a2.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
(2)对n∈N*,Sn是数列{an}的前n项和,Sn=
| n(n+1) |
| 2 |
| 1 |
| Sn |
| 2 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
解答:解:(1)∵Sn=
(an2+an),
∴当n=1时,S1=a1=
(a12+a1),
又{an}中各项均为正数解得a1=1,…(2分)
当n≥2时,Sn-Sn-1=an=
(an2+an)-
(an-12+an-1),…(4分)
∴2an=(an2+an)-(an-12+an-1),
即an2+an-an-12-an-1-2an=0,
即an2-an-12-an-1-an=0,
∴(an-an-1)(an+an-1)-(an-1+an)=0,
∴(an-an-1-1)(an+an-1)=0,
∵{an}中各项均为正数,∴an-an-1-1=0,
即an-an-1=1(n≥2),∴
=n,(n≥2),…(6分)
又n=1时,a1=1,∴数列{an}的通项公式是an=n,(n∈N*).…(8分)
(2)对n∈N*,Sn是数列{an}的前n项和,
∴Sn=
,
=
=2(
-
),…(10分)
∴
+
+…+
=2(1-
+
-
+…+
-
)=2(1-
),…(12分)
∵a2=2,∴
+
+…+
=2(1-
)<2=a2,
∴
+
+…+
<a2.
| 1 |
| 2 |
∴当n=1时,S1=a1=
| 1 |
| 2 |
又{an}中各项均为正数解得a1=1,…(2分)
当n≥2时,Sn-Sn-1=an=
| 1 |
| 2 |
| 1 |
| 2 |
∴2an=(an2+an)-(an-12+an-1),
即an2+an-an-12-an-1-2an=0,
即an2-an-12-an-1-an=0,
∴(an-an-1)(an+an-1)-(an-1+an)=0,
∴(an-an-1-1)(an+an-1)=0,
∵{an}中各项均为正数,∴an-an-1-1=0,
即an-an-1=1(n≥2),∴
| a | n |
又n=1时,a1=1,∴数列{an}的通项公式是an=n,(n∈N*).…(8分)
(2)对n∈N*,Sn是数列{an}的前n项和,
∴Sn=
| n(n+1) |
| 2 |
| 1 |
| Sn |
| 2 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
∵a2=2,∴
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
| 1 |
| n+1 |
∴
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
点评:本题考查数列的通项公式的求法,考查两个式式大小的比较,解题时要认真审题,仔细解答,注意裂项求和法的合理运用.
练习册系列答案
相关题目