题目内容
已知点P为椭圆
+
=1上一点,A、B为椭圆
+
=1上不同的两点,且
=2
+
,若OA、OB所在的直线的斜率为k1、k2,则k1•k2=
| x2 |
| 20 |
| y2 |
| 15 |
| x2 |
| 4 |
| y2 |
| 3 |
| OP |
| OA |
| OB |
-
| 3 |
| 4 |
-
.| 3 |
| 4 |
分析:设A(x1,y1),B(x2,y2),P(x0,y0).利用点与椭圆的关系可得
+
=1,
+
=1,
+
=1.再利用向量的运算
=2
+
,可得
,代入点P满足的椭圆方程即可得出.
| ||
| 4 |
| ||
| 3 |
| ||
| 4 |
| ||
| 3 |
| ||
| 20 |
| ||
| 15 |
| OP |
| OA |
| OB |
|
解答:解:设A(x1,y1),B(x2,y2),P(x0,y0).
则
+
=1,
+
=1,
+
=1.
∵
=2
+
,∴
,代入上述方程得
+
=1,
∴
(
+
)+
(
+
)+
(
x1x2+
y1y2)=1,
∴
+
+
(
x1x2+
y1y2)=1,
得
=-
.
故答案为-
.
则
| ||
| 4 |
| ||
| 3 |
| ||
| 4 |
| ||
| 3 |
| ||
| 20 |
| ||
| 15 |
∵
| OP |
| OA |
| OB |
|
| (2x1+x2)2 |
| 20 |
| (2y1+y2)2 |
| 15 |
∴
| 4 |
| 5 |
| ||
| 4 |
| ||
| 3 |
| 1 |
| 5 |
| ||
| 4 |
| ||
| 3 |
| 4 |
| 5 |
| 1 |
| 4 |
| 1 |
| 3 |
∴
| 4 |
| 5 |
| 1 |
| 5 |
| 4 |
| 5 |
| 1 |
| 4 |
| 1 |
| 3 |
得
| y1y2 |
| x1x2 |
| 3 |
| 4 |
故答案为-
| 3 |
| 4 |
点评:熟练掌握点与椭圆的关系、向量的运算与相等、斜率的计算公式等是解题的关键.
练习册系列答案
相关题目