题目内容
已知数列{an}满足a1=a,an+1=| (4n+6)an+4n+10 |
| 2n+1 |
(1)判断数列{
| an+2 |
| 2n+1 |
(2)如果a=1时,数列{an}的前n项和为Sn,试求出Sn.
分析:(1)先将an+1=
转化变形构造出数列{
},再去研究其性质.
(2)由(1)可求出an=(2n+1)•2n-1-2,利用分组、错位相消法求和即可.
| (4n+6)an+4n+10 |
| 2n+1 |
| an+2 |
| 2n+1 |
(2)由(1)可求出an=(2n+1)•2n-1-2,利用分组、错位相消法求和即可.
解答:解:(1)an+1=
=
,
=2•
.令bn=
,,则bn+1=2bn,且b1=
.
∴当a=-2时,b1=0,则bn=0,数列{
}不是等比数列.
当a≠-2时,b1≠0,则数列{
}是等比数列,且公比为2.
bn=b1•2n-1,即
=
•2n-1.解得an=
•2n-1-2.
(2)由(1)知,当a=1时,an=(2n+1)•2n-1-2
Sn=3+5×2+7×22+…+(2n+1)•2 n-1-2n.
由错位相减法,求得Tn=3+5×2+7×22+…+(2n+1)•2 n-1 =(2n-1)•2n+1,
∴Sn=Tn-2n=(2n-1)•(2n-1),
| (4n+6)an+4n+10 |
| 2n+1 |
| (4n+6)(an+2) |
| 2n+1 |
| an+1+2 |
| 2n+3 |
| an+2 |
| 2n+1 |
| an+2 |
| 2n+1 |
| a+2 |
| 3 |
∴当a=-2时,b1=0,则bn=0,数列{
| an+2 |
| 2n+1 |
当a≠-2时,b1≠0,则数列{
| an+2 |
| 2n+1 |
bn=b1•2n-1,即
| an+2 |
| 2n+1 |
| a+2 |
| 3 |
| (a+2)(2n+1) |
| 3 |
(2)由(1)知,当a=1时,an=(2n+1)•2n-1-2
Sn=3+5×2+7×22+…+(2n+1)•2 n-1-2n.
由错位相减法,求得Tn=3+5×2+7×22+…+(2n+1)•2 n-1 =(2n-1)•2n+1,
∴Sn=Tn-2n=(2n-1)•(2n-1),
点评:本题考查等比数列的定义及判定、分组求和、错位相消法求和.考查变形转化、计算、分类讨论的思想方法和能力.
练习册系列答案
相关题目