题目内容
已知函数f(x)=
sin2x(
-tan
)+
cos2x.
(1)求f(x)的单调的递减区间;
(2)若f(x)=
,求x的值.
| 1 |
| 2 |
| 1 | ||
tan
|
| x |
| 2 |
| ||
| 2 |
(1)求f(x)的单调的递减区间;
(2)若f(x)=
| 1 |
| 2 |
分析:(1)利用三角函数的恒等变换化简函数f(x)的解析式为sin(2x+
),令 2kπ+
≤2x+
≤2kπ+
,k∈z,求得x的范围,即可求得f(x)的单调的递减区间.
(2)由f(x)=
,可得sin(2x+
)=
,故 2x+
=2kπ+
,或2x+
=2kπ+
,k∈z,由此求得x的值.
| π |
| 3 |
| π |
| 2 |
| π |
| 3 |
| 3π |
| 2 |
(2)由f(x)=
| 1 |
| 2 |
| π |
| 3 |
| 1 |
| 2 |
| π |
| 3 |
| π |
| 6 |
| π |
| 3 |
| 5π |
| 6 |
解答:解:(1)∵函数f(x)=
sin2x(
-tan
)+
cos2x=
sin2x•
+
cos2x=
sin2x+
cos2x=sin(2x+
),
令 2kπ+
≤2x+
≤2kπ+
,k∈z,解得 kπ+
≤2x+
≤kπ+
,k∈z,
故f(x)的单调的递减区间为[kπ+
,kπ+
],k∈z.
(2)由f(x)=
,可得sin(2x+
)=
,故 2x+
=2kπ+
,或2x+
=2kπ+
,k∈z.
解得 x=kπ-
,或 x=kπ+
,k∈z.
| 1 |
| 2 |
| 1 | ||
tan
|
| x |
| 2 |
| ||
| 2 |
| 1 |
| 2 |
| cosx | ||
|
| ||
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| π |
| 3 |
令 2kπ+
| π |
| 2 |
| π |
| 3 |
| 3π |
| 2 |
| π |
| 12 |
| π |
| 3 |
| 7π |
| 12 |
故f(x)的单调的递减区间为[kπ+
| π |
| 12 |
| 7π |
| 12 |
(2)由f(x)=
| 1 |
| 2 |
| π |
| 3 |
| 1 |
| 2 |
| π |
| 3 |
| π |
| 6 |
| π |
| 3 |
| 5π |
| 6 |
解得 x=kπ-
| π |
| 12 |
| π |
| 4 |
点评:本题主要考查三角函数的恒等变换及化简求值,正弦函数的单调减区间,根据三角函数的值求角,属于中档题.
练习册系列答案
相关题目