题目内容

选修4-1:几何证明选讲

如图,已知的两条角平分线相交于H,,F在上,且

(I) 证明:B,D,H,E四点共圆:

(II) 证明:平分。   

解:

  (Ⅰ)在△ABC中,因为∠B=60°,

所以∠BAC+∠BCA=120°.

因为AD,CE是角平分线,

所以∠HAC+∠HCA=60°,

故∠AHC=120°.   

于是∠EHD=∠AHC=120°.

因为∠EBD+∠EHD=180°,

所以B,D,H,E四点共圆.

(Ⅱ)连结BH,则BH为∠ABC的平分线,得∠HBD=30°

由(Ⅰ)知B,D,H,E四点共圆,

所以∠CED=∠HBD=30°.

又∠AHE=∠EBD=60°,由已知可得EF⊥AD,

可得∠CEF=30°.

所以CE平分∠DEF.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网