题目内容
已知{an}为等比数列,且a10=30,a20=50,求通项an.
分析:设出等比数列的首项和公比,由a10=30,a20=50列式求得首项和公比的值,然后分两种情况求出等比数列的通项公式.
解答:解:设等比数列{an}的首项为a1,公比为q,
由a10=30,a20=50得:
,
②÷①得:q10=
,所以,q=±
.
当q=
时,a1=
=
=30×(
)
.
则an=a1qn-1=30×(
)
×(
)
=30×(
)
×(
)
=30×(
)1-
.
当q=-
时,a1=
=
=-30×(
)
.
则an=a1qn-1=-30×(
)
×(-(
)
)n-1=(-1)n×30×(
)1-
.
综上,an=30×(
)1-
或an=(-1)n×30×(
)1-
.
由a10=30,a20=50得:
|
②÷①得:q10=
| 5 |
| 3 |
| 10 |
| ||
当q=
| 10 |
| ||
| 30 |
| q9 |
| 30 | |||||
(
|
| 3 |
| 5 |
| 9 |
| 10 |
则an=a1qn-1=30×(
| 3 |
| 5 |
| 9 |
| 10 |
| 5 |
| 3 |
| n-1 |
| 10 |
| 3 |
| 5 |
| 9 |
| 10 |
| 3 |
| 5 |
| 1-n |
| 10 |
| 3 |
| 5 |
| n |
| 10 |
当q=-
| 10 |
| ||
| 30 |
| q9 |
| 30 | |||||
(-
|
| 3 |
| 5 |
| 9 |
| 10 |
则an=a1qn-1=-30×(
| 3 |
| 5 |
| 9 |
| 10 |
| 5 |
| 3 |
| 1 |
| 10 |
| 3 |
| 5 |
| n |
| 10 |
综上,an=30×(
| 3 |
| 5 |
| n |
| 10 |
| 3 |
| 5 |
| n |
| 10 |
点评:本题考查了等比数列的通项公式,考查了学生的计算能力,此题涉及复杂的有理指数幂的化简运算,学生易出错,属中档题型.
练习册系列答案
相关题目