题目内容

已知{an}是正数组成的数列,a1=1,且点(
an
an+1
)(n∈N*)在函数y=x2+1的图象上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若列数{bn}满足b1=1,bn+1=bn+2an,求证:bn•bn+2<b2n+1
解法一:
(Ⅰ)由已知得an+1=an+1、即an+1-an=1,又a1=1,
所以数列{an}是以1为首项,公差为1的等差数列.
故an=1+(a-1)×1=n.

(Ⅱ)由(Ⅰ)知:an=n从而bn+1-bn=2n
bn=(bn-bn-1)+(bn-1-bn-2)++(b2-b1)+b1
=2n-1+2n-2++2+1
=
1-2n
1-2
=2n-1

∵bn•bn+2-bn+12=(2n-1)(2n+2-1)-(2n+1-1)2
=(22n+2-2n-2n+2+1)-(22n+2-2•2n+1+1)
=-2n<0
∴bn•bn+2<bn+12

解法二:
(Ⅰ)同解法一.
(Ⅱ)∵b2=1
bn•bn+2-bn+12=(bn+1-2n)(bn+1+2n+1)-bn+12
=2n+1•bn+1-2n•bn+1-2n•2n+1

=2n(bn+1-2n+1
=2n(bn+2n-2n+1
=2n(bn-2n
=…
=2n(b1-2)
=-2n<0
∴bn•bn+2<bn+12
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网