题目内容
8、函数f(x)=logax(a>0,a≠1),若f(x1x2…x2009)=16,则f(x12)+f(x22)+…+f(x20092)=
32
.分析:由题设条件知f(x12)+f(x22)+…+f(x20092)=logax12+logax22+…+logax20092=loga(x1x2…x2009)2,由此能够求出f(x1x2…x2009)=16,则f(x12)+f(x22)+…+f(x20092)的值.
解答:解:∵f(x)=logax(a>0,a≠1),且f(x1x2…x2009)=16,
∴f(x12)+f(x22)+…+f(x20092)
=logax12+logax22+…+logax20092
=loga(x1x2…x2009)2
=2×f(x1x2…x2009)=2×16=32.
故答案:32.
∴f(x12)+f(x22)+…+f(x20092)
=logax12+logax22+…+logax20092
=loga(x1x2…x2009)2
=2×f(x1x2…x2009)=2×16=32.
故答案:32.
点评:本题考查对数的运算性质,解题时要注意公式的灵活运用.
练习册系列答案
相关题目
已知函数f(x)=log -
(x2-ax+3a)在[2,+∞)上是减函数,则实数a的范围是( )
| 1 |
| 2 |
| A、(-∞,4] |
| B、(-4,4] |
| C、(0,12) |
| D、(0,4] |