题目内容
设f(x)=Asin(ωx+φ)(ω、A为正常数,x∈R),则f(0)=0是f(x)为奇函数的
- A.充分非必要条件
- B.必要非充分条件
- C.充要条件
- D.既不充分也不必要条件
C
分析:f(0)=0?f(0)=Asin(ω×0+?)=Asin?=0??=kπ,k∈Z?f(x)=Asin(ωx+?)(A>0,ω>0,x∈R)是奇函数.f(x)为奇函数??=kπ,k∈Z?f(0)=Asin(ω×0+kπ)=Asinkπ=0.所以f(0)=0是f(x)为奇函数的充要条件.
解答:若f(0)=0,
则f(0)=Asin(ω×0+?)=Asin?=0,
∴?=kπ,k∈Z,
∴f(x)=Asin(ωx+?)(A>0,ω>0,x∈R)是奇函数.
若f(x)为奇函数,
则?=kπ,k∈Z,
∴f(0)=Asin(ω×0+kπ)=Asinkπ=0.
所以f(0)=0是f(x)为奇函数的充要条件.
故选C.
点评:本题考查充分条件、必要条件和充要条件的判断,解题时要认真审题,仔细解答,注意三角函数性质的灵活运用.
分析:f(0)=0?f(0)=Asin(ω×0+?)=Asin?=0??=kπ,k∈Z?f(x)=Asin(ωx+?)(A>0,ω>0,x∈R)是奇函数.f(x)为奇函数??=kπ,k∈Z?f(0)=Asin(ω×0+kπ)=Asinkπ=0.所以f(0)=0是f(x)为奇函数的充要条件.
解答:若f(0)=0,
则f(0)=Asin(ω×0+?)=Asin?=0,
∴?=kπ,k∈Z,
∴f(x)=Asin(ωx+?)(A>0,ω>0,x∈R)是奇函数.
若f(x)为奇函数,
则?=kπ,k∈Z,
∴f(0)=Asin(ω×0+kπ)=Asinkπ=0.
所以f(0)=0是f(x)为奇函数的充要条件.
故选C.
点评:本题考查充分条件、必要条件和充要条件的判断,解题时要认真审题,仔细解答,注意三角函数性质的灵活运用.
练习册系列答案
相关题目