题目内容
如图,直三棱柱ABC-A1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分别是A1B1,A1A的中点,
![]()
(1)求
的模;
(2)求cos〈
,
〉的值;
(3)求证:A1B⊥C1M;
(4)求CB1与平面A1ABB1所成的角的余弦值.
如图,建立空间直角坐标系Cxyz.
(1)依题意得B(0,1,0)
、N(1,0,1),
∴|
|=
=
.
![]()
(2)依题意得A1(1,0,2),C(0,0,0),B1(0,1,2)
∴
=(1,-1,2),
=(0,1,2),∴
·
=3,
|
|=
,|
|=
,∴cos〈
,
〉
=
=
.
(3)依题意,得C1(0,0,2)、M(
,
,2),
=(-1,1,-2),
=(
,
,0),∴
·
=-
+
+0=0,∴
⊥
,∴A1B⊥C1M.
(4)方法一:取AB中点O,连结CO,B1O,则CO⊥平面A1ABB1,
∴∠CB1O是CB1与平面A1ABB1所成的角.
∵CO=
AB=
,B1C=
=
,
∴B1O=
=
=
=
,
∴cos∠CB1O=
=
×
=
.
即CB1与平面A1ABB1所成角的余弦值是
.
方法二:设平面A1ABB1
的一个法向量是n=(x,y,z),
∵
=(1,-1,0),
=(0,0,2),
![]()
解得
,取x=y=1,则n=(1,1,0),
直线CB1的方向向量是n1=(0,1,2),
∴cos〈n,n1〉=
=
=
,
∴sin〈n,n1〉=
=
,
∴直线CB1与平面A1ABB1所成角的余弦值是
.
练习册系列答案
相关题目