题目内容
【题目】如图,分别过椭圆
左、右焦点
的动直线
相交于
点,与椭圆
分别交于
与
不同四点,直线
的斜率
满足
, 已知
与
轴重合时,
.
![]()
(1)求椭圆
的方程;
(2)是否存在定点
使得
为定值,若存在,求出
点坐标并求出此定值,若不存在,
说明理由.
【答案】(1)
;(2)存在,
,
,
.
【解析】
试题分析:(1)当
与
轴重合时,
垂直于
轴,得
,得
,
从而得椭圆的方程;(2)由题目分析如果存两定点,则
点的轨迹是椭圆或者双曲线 ,所以把
坐标化,可得
点的轨迹是椭圆,从而求得定点
和点
.
试题解析:
当
与
轴重合时,
, 即
,所以
垂直于
轴,得
,
,, 得
,
椭圆
的方程为
.
焦点
坐标分别为
, 当直线
或
斜率不存在时,
点坐标为
或
;
当直线![]()
斜率存在时,设斜率分别为
, 设![]()
由
, 得:
, 所以:
,
, 则:
![]()
. 同理:![]()
, 因为
, 所以![]()
, 即
, 由题意知
, 所以
, 设
,则
,即
,由当直线
或
斜率不存在时,
点坐标为
或
也满足此方程,所以点
在椭圆
上.存在点
和点
,使得
为定值,定值为
.
练习册系列答案
相关题目
【题目】城市公交车的数量若太多则容易造成资源的浪费;若太少又难以满足乘客需求.某市公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间作为样本分成5组,如下表所示(单位:分钟):
组别 | 候车时间 | 人数 |
一 |
| 2 |
二 |
| 6 |
三 |
| 4 |
四 |
| 2 |
五 |
| 1 |
(1)估计这60名乘客中候车时间少于10分钟的人数;
(2)若从上表第三、四组的6人中任选2人作进一步的调查,求抽到的两人恰好来自不同组的概率.