题目内容
(2012•烟台一模)已知cos
=
,cos
cos
=
,cos
cos
cos
=
,…,根据这些结果,猜想出的一般结论是
| π |
| 3 |
| 1 |
| 2 |
| π |
| 5 |
| 2π |
| 5 |
| 1 |
| 4 |
| π |
| 7 |
| 2π |
| 7 |
| 3π |
| 7 |
| 1 |
| 8 |
cos
cos
…cos
=
| π |
| 2n+1 |
| 2π |
| 2n+1 |
| nπ |
| 2n+1 |
| 1 |
| 2n |
cos
cos
…cos
=
.| π |
| 2n+1 |
| 2π |
| 2n+1 |
| nπ |
| 2n+1 |
| 1 |
| 2n |
分析:根据题意,分析所给的等式可得:对于第n个等式,等式左边为n个余弦连乘的形式,且角部分为分式,分子从π到nπ,分母为(2n+1),右式为
;将规律表示出来可得答案.
| 1 |
| 2n |
解答:解:根据题意,分析所给的等式可得:
cos
=
,可化为cos
=
cos
cos
=
,可化为cos
cos
=
cos
cos
cos
=
,可化为cos
cos
cos
=
;
则一般的结论为cos
cos
…cos
=
;
故答案为cos
cos
…cos
=
.
cos
| π |
| 3 |
| 1 |
| 2 |
| 1×π |
| 2×1+1 |
| 1 |
| 21 |
cos
| π |
| 5 |
| 2π |
| 5 |
| 1 |
| 4 |
| 1×π |
| 2×2+1 |
| 2×π |
| 2×2+1 |
| 1 |
| 22 |
cos
| π |
| 7 |
| 2π |
| 7 |
| 3π |
| 7 |
| 1 |
| 8 |
| 1×π |
| 2×3+1 |
| 2×π |
| 2×3+1 |
| 3×π |
| 2×3+1 |
| 1 |
| 23 |
则一般的结论为cos
| π |
| 2n+1 |
| 2π |
| 2n+1 |
| nπ |
| 2n+1 |
| 1 |
| 2n |
故答案为cos
| π |
| 2n+1 |
| 2π |
| 2n+1 |
| nπ |
| 2n+1 |
| 1 |
| 2n |
点评:本题考查归纳推理的运用,解题的关键在于发现3个等式的变化的规律.
练习册系列答案
相关题目