题目内容

双曲线x2-y2=1的一弦中点为(2,1),则此弦所在的直线的方程为(  )
分析:设出以A(2,1)为中点的弦两端点为P1(x1,y1),P2(x2,y2),利用点差法可求得以A(2,1)为中点的弦所在直线的斜率.再由点斜式可求得直线方程.
解答:解:设以A(2,1)为中点的弦两端点为P1(x1,y1),P2(x2,y2),
则x1+x2=4,y1+y2=2.
又x12-y12=1,①
x22-y22=1,②
①-②得:(x1+x2)(x1-x2)=(y1+y2)(y1-y2),
又据对称性知x1≠x2
∴A(2,1)为中点的弦所在直线的斜率k=2,
∴中点弦所在直线方程为y-1=2(x-2),即y=2x-3.
故选C.
点评:本题考查直线与双曲线的关系,考查点差法求斜率,考查分析与运算能力,求得直线P1P2的斜率是关键,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网