题目内容

16、平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:
充要条件①
三组对面分别平行的四棱柱为平行六面体

充要条件②
平行六面体的对角线交于一点,并且在交点处互相平分;

(写出你认为正确的两个充要条件)
分析:本题考察的知识点是充要条件的定义及棱柱的结构特征及类比推理,由平行六面体与平行四边形的定义相似,故我们可以类比平行四边形的性质,类比推断平行六面体的性质.
解答:解:类比平行四边形的性质:两组对边分别平行的四边形为平行四边形,
则我们类比得到:三组对面分别平行的四棱柱为平行六面体.
类比平行四边形的性质:两条对角线互相平分,
则我们类比得到:平行六面体的对角线交于一点,并且在交点处互相平分;
故答案为:三组对面分别平行的四棱柱为平行六面体;平行六面体的对角线交于一点,并且在交点处互相平分;
点评:类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网