题目内容
已知数列{an}满足a1=2,an+1(an+1)=2an(n∈N*).
(1)证明{
-1}为等比数列,并求出通项公式an;
(2)设bn=
,{bn}的前n项和为Sn,证明:Sn<1.
(1)证明{
| 1 |
| an |
(2)设bn=
| an |
| 2n+1-1 |
分析:(1)将数列递推式取倒数,再两边减去1,即可证得{
-1}为等比数列,从而可求出通项公式an;
(2)将数列通项裂项,再累加求和,即可证得结论.
| 1 |
| an |
(2)将数列通项裂项,再累加求和,即可证得结论.
解答:证明:(1)∵an+1(an+1)=2an
∴
=
=
(1+
)
∴
-1=
(
-1)
∵a1=2,∴
-1=-
∴{
-1}为首项为-
,公比为
的等比数列
∴
-1=-(
)n,
∴an=
;
(2)bn=
=
=
-
∴{bn}的前n项和为Sn=
-
+
-
+…+
-
=
-
<1
∴Sn<1.
∴
| 1 |
| an+1 |
| an+1 |
| 2an |
| 1 |
| 2 |
| 1 |
| an |
∴
| 1 |
| an+1 |
| 1 |
| 2 |
| 1 |
| an |
∵a1=2,∴
| 1 |
| a1 |
| 1 |
| 2 |
∴{
| 1 |
| an |
| 1 |
| 2 |
| 1 |
| 2 |
∴
| 1 |
| an |
| 1 |
| 2 |
∴an=
| 2n |
| 2n-1 |
(2)bn=
| an |
| 2n+1-1 |
| ||
| 2n+1-1 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1-1 |
∴{bn}的前n项和为Sn=
| 1 |
| 21-1 |
| 1 |
| 22-1 |
| 1 |
| 22-1 |
| 1 |
| 23-1 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1-1 |
| 1 |
| 21-1 |
| 1 |
| 2n+1-1 |
∴Sn<1.
点评:本题主要考查了数列与不等式的综合,以及数列的递推关系,同时考查了计算能力,属于中档题.
练习册系列答案
相关题目