题目内容

函数y=xlnx的单调递减区间是(  )
A、(e-4,+∞)B、(-∞,e-1C、(0,e-1D、(e,+∞)
分析:求出该函数的导函数,由导数小于0列出不等式,解此不等式求得正实数x的取值范围即为所求.
解答:解:函数y=xlnx的导数为 y′=(x)′lnx+x•(lnx)′=lnx+1,
由 lnx+1<0 得,0<x<
1
e
,故函数y=xlnx 的减区间为(0,
1
e
),
故选 C.
点评:本题考查利用导数求函数的单调区间的方法,求函数的导数以及对数函数的定义域与单调区间.注意函数的定义域.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网