题目内容
单调递增数列{an}的前n项和为Sn,且满足2Sn=
+n,
(1)求数列{an}的通项公式;
(2)数列{bn}满足an+1+log3bn=log3an,求数列{bn}的前n项和Tn.
| a | 2 n |
(1)求数列{an}的通项公式;
(2)数列{bn}满足an+1+log3bn=log3an,求数列{bn}的前n项和Tn.
分析:(1)由2Sn=
+n,可求a1,当n≥2,2Sn=
+n,2Sn-1=an-12+n-1两式相减可得,结合数列{an}单调递增可得数列的项之间的递推公式,结合等差数列的通项公式即可求解
(2)由an+1+log3bn=log3an,可求bn,利用错位相减求和即可
| a | 2 n |
| a | 2 n |
(2)由an+1+log3bn=log3an,可求bn,利用错位相减求和即可
解答:解:(1)∵2Sn=
+n,
∴n=1时2S1=a12+1
∴a1=1
当n≥2,2Sn=
+n,2Sn-1=an-12+n-1
两式相减可得,2Sn-2Sn-1=an2-an-12+1
即2an=an2-an-12+1
∴(an-1)2=an-12
∵数列{an}单调递增
∴an>an-1
∴an-an-1=1即数列{an}是以1为首项,以1为公差的等差数列
∴an=1+1×(n-1)=n
(2)∵an+1+log3bn=log3an,
∴n+1+log3bn=log3n即
∴bn=
∴Tn=1•
+2•
+…+n•
Tn=1•
+2•
+…+(n-1)•
+n•
两式相减可得,
Tn=
+
+…+
-n•
=
-n•
∴Tn=
(1-
)-
| a | 2 n |
∴n=1时2S1=a12+1
∴a1=1
当n≥2,2Sn=
| a | 2 n |
两式相减可得,2Sn-2Sn-1=an2-an-12+1
即2an=an2-an-12+1
∴(an-1)2=an-12
∵数列{an}单调递增
∴an>an-1
∴an-an-1=1即数列{an}是以1为首项,以1为公差的等差数列
∴an=1+1×(n-1)=n
(2)∵an+1+log3bn=log3an,
∴n+1+log3bn=log3n即
∴bn=
| n |
| 3n+1 |
∴Tn=1•
| 1 |
| 32 |
| 1 |
| 33 |
| 1 |
| 3n+1 |
| 1 |
| 3 |
| 1 |
| 33 |
| 1 |
| 34 |
| 1 |
| 3n+1 |
| 1 |
| 3n+2 |
两式相减可得,
| 2 |
| 3 |
| 1 |
| 32 |
| 1 |
| 33 |
| 1 |
| 3n+1 |
| 1 |
| 3n+2 |
=
| ||||
1-
|
| 1 |
| 3n+2 |
∴Tn=
| 1 |
| 4 |
| 1 |
| 3n |
| n |
| 3n+2 |
点评:本题主要考查了利用数列的递推公式构造等差数列求解通项公式,数列的错位相减求和方法的应用是求和的重点,要注意掌握
练习册系列答案
相关题目