题目内容

(2010•通州区一模)已知数列{an}的前n项和Sn=n2an-n(n-1)(n∈N*),且a1=
1
2

(I)求a2与a3
(II)求证:数列{
n+1
n
Sn}
是等差数列;
(III)试比较a1+2a2+3a3+…+nan与2n+1-n-2的大小,并说明理由.
分析:(Ⅰ)利用Sn=n2an-n(n-1)(n∈N*),n分别取2,3代入,结合a1=
1
2
,可求a2与a3的值;         
(II)由 an=Sn-Sn-1 (n≥2),结合条件可得
n+1
n
Sn  - 
n
n-1
Sn-1
=1,结论得证.
(Ⅲ)由(Ⅱ)知,
n+1
n
Sn=1+(n-1)•1=n
Sn=
n2
n+1
,根据Sn=n2an-n(n-1),可得
n2
n+1
=n2an-n(n-1),从而有nan=(n+1)-
1
n+1
-1
,利用 2n=(1+1)n=1+n+…+Cnn≥1+n,得
1
n+1
≥ 
1
2n
,从而有nan=(n+1)-
1
n+1
-1≤2n-
1
2n
-1
,故a1+2a2+3a3+…+nan(2-
1
2
-1)
+(2 2-
1
2 2
-1)
+…+(2 n-
1
2 n
-1)
,利用分组求和即可得结论.
解答:解:(Ⅰ)∵Sn=n2an-n(n-1)(n∈N*),
∴S2=4a2-2=a1+a2,S3=9a3-6=a1+a2+a3
a1=
1
2

a2=
5
6
a3=
11
12
.                                                     
(Ⅱ)证明:由 an=Sn-Sn-1 (n≥2),及 Sn=n2an-n(n-1)得 
Sn=n2(Sn-Sn-1)-n(n-1),即  (n2-1 )Sn-n2Sn-1=n(n-1),
n+1
n
Sn  - 
n
n-1
Sn-1
=1,
a1=
1
2
,∴n=1时,
n+1
n
Sn=1

∴{
n+1
n
Sn
}是首项为1,公差为1的等差数列.
(Ⅲ)由(Ⅱ)知,
n+1
n
Sn=1+(n-1)•1=n

Sn=
n2
n+1

又已知Sn=n2an-n(n-1),
n2
n+1
=n2an-n(n-1),
nan=
n
n+1
+n-1=(n+1)-
1
n+1
-1
.                                       
∵2n=(1+1)n=Cn0+Cn1+…+Cnn≥1+n,
1
n+1
≥ 
1
2n

-
1
n+1
≤-
1
2n

nan=(n+1)-
1
n+1
-1≤2n-
1
2n
-1

∴a1+2a2+3a3+…+nan(2-
1
2
-1)
+(2 2-
1
2 2
-1)
+…+(2 n-
1
2 n
-1)

=(2+22+…+2n)-(
1
2
+
1
22
+…+
1
2n
)-n

=
2(1-2n)
1-2
-
1
2
(1-
1
2n
)
1-
1
2
-n

=2n+1-2+
1
2n
-1-n

∵当n∈N*时,
1
2n
<1
,即
1
2n
-1<0

2n+1-2+
1
2n
-1-n
<2n+1-n-2.
即a1+2a2+3a3+…+nan<2n+1-n-2
点评:本题以数列递推式为载体,考查数列递推式的运用,考查等差数列的定义,考查放缩法,解题的关键是合理运用数列递推式.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网