题目内容

已知a是实数,函数f(x)=ax2+2x-3-a+
4a
.求函数y=f(x)在区间[0,1]上的最小值.
分析:由a≠0得y=f(x)为二次函数,对称轴不固定,而区间固定,须分轴在区间左边,轴在区间右边,轴在区间中间三种情况讨论.
解答:解:由a≠0可知,二次函数f(x)=ax2+2x-3-a+
4
a

=a(x2+
2
a
x+
4
a2
)-
4
a
-3-a+
4
a

=a(x+
2
a
)2-3-a
(3分)
所以(1)当-
2
a
<0,即a>0时,函数y=f(x)在区间[0,1]上是单调递增函数,
所以函数的最小值是f(0)=
4
a
-a-3(5分)
(2)当-
2
a
>1,即-1<a<0时,函数y=f(x)在区间[0,1]上是单调递减函数,
所以函数的最小值是f(1)=
4
a
-1(8分)
(3)当0<-
2
a
≤1,即a≤-1时,函数y=f(x)在区间[0,1]上的最小值是f(
2
a
)=-a-3(10分)
点评:本题的实质是求二次函数的最值问题,关于解析式含参数的二次函数在固定闭区间上的最值问题,一般是根据对称轴和闭区间的位置关系来进行分类讨论,如轴在区间左边,轴在区间右边,轴在区间中间,最后在综合归纳得出所需结论.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网