题目内容
已知Sn=1+
+
+
+…+
(n>1,n∈N*).求证:S2n>1+
(n≥2,n∈N*).
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2n |
| n |
| 2 |
证明:(1)当n=2时,左边=1+
+
+
=
,右边=1+
=2,
∴左边>右边
(2)假设n=k(k≥2)时不等式成立,即
=1+
+
+
+…+
≥1+
,
当n=k+1时,不等式左边S2(k+1)=1+
+
+
+…+
+…+
>1+
+
+…+
>1+
+
=1+
+
=1+
,
综上(1)(2)可知S2n>1+
对于任意的n≥2正整数成立.
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 25 |
| 12 |
| 2 |
| 2 |
∴左边>右边
(2)假设n=k(k≥2)时不等式成立,即
| S | 2k |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2k |
| k |
| 2 |
当n=k+1时,不等式左边S2(k+1)=1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2k+1 |
| 1 |
| 2k+1 |
>1+
| k |
| 2 |
| 1 |
| 2k+1 |
| 1 |
| 2k+1 |
| k |
| 2 |
| 2k |
| 2k+2k |
| k |
| 2 |
| 1 |
| 2 |
| k+1 |
| 2 |
综上(1)(2)可知S2n>1+
| n |
| 2 |
练习册系列答案
相关题目