题目内容
已知A,B,P是双曲线
-
=1上不同的三点,且A,B连线经过坐标原点,若直线PA,PB的斜率乘积kPA•kPB=
,则该双曲线的离心率为( )
| x2 |
| a2 |
| y2 |
| b2 |
| 1 |
| 3 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
分析:设A,B,P三点的坐标分别为 (x1,y1),(-x1,-y1),(x2,y2 ),由 kPA•kPB=
可得
=
,①又
-
=1,
-
=1,可得
=
②,
由①②可得
=
,故 e2=
=
=
,从而得到离心率 e=
.
| 1 |
| 3 |
| y22 -y12 |
| x22-x12 |
| 1 |
| 3 |
| x12 |
| a2 |
| y12 |
| b2 |
| x22 |
| a2 |
| y22 |
| b2 |
| y22 -y12 |
| x22-x12 |
| b2 |
| a2 |
由①②可得
| b2 |
| a2 |
| 1 |
| 3 |
| c2 |
| a2 |
| a2+b2 |
| a2 |
| 4 |
| 3 |
| c |
| a |
解答:解:设A,B,P三点的坐标分别为 (x1,y1),(-x1,-y1),(x2,y2 ),
由 kPA•kPB=
可得,
•
=
=
①.
又
-
=1,
-
=1,∴
-
=
-
,
=
②,由①②可得
=
,∴e2=
=
=
=
,
故 离心率 e=
=
,
故选 D.
由 kPA•kPB=
| 1 |
| 3 |
| y2 -y1 |
| x2-x1 |
| y2 +y1 |
| x2+ x1 |
| y22 -y12 |
| x22-x12 |
| 1 |
| 3 |
又
| x12 |
| a2 |
| y12 |
| b2 |
| x22 |
| a2 |
| y22 |
| b2 |
| x22 |
| a2 |
| x12 |
| a2 |
| y22 |
| b2 |
| y12 |
| b2 |
| y22 -y12 |
| x22-x12 |
| b2 |
| a2 |
| b2 |
| a2 |
| 1 |
| 3 |
| c2 |
| a2 |
| a2+b2 |
| a2 |
a2+
| ||
| a2 |
| 4 |
| 3 |
故 离心率 e=
| c |
| a |
2
| ||
| 3 |
故选 D.
点评:本题考查双曲线的标准方程,以及双曲线的简单性质的应用,得到
=
,是解题的关键.
| b2 |
| a2 |
| 1 |
| 3 |
练习册系列答案
相关题目
已知F1,F2分别为双曲
-
=1(a>0,b>0)的左、右焦点,P为双曲线左支上任一点,若
的最小值为8a,则双曲线的离心率e的取值范围是( )
| x2 |
| a2 |
| y2 |
| b2 |
| |PF2|2 |
| |PF1| |
| A、(1,+∞) |
| B、(0,3] |
| C、(1,3] |
| D、(0,2] |