ÌâÄ¿ÄÚÈÝ
ÏÂÁÐËĸöÃüÌâÖеÄÕæÃüÌâÊÇ(¡¡¡¡)
A£®¾¹ý¶¨µãP0(x0£¬y0)µÄÖ±Ïß¶¼¿ÉÒÔÓ÷½³Ìy£y0£½k(x£x0)±íʾ
B£®¾¹ýÈÎÒâÁ½¸ö²»Í¬µÄµãP1(x1£¬y1)¡¢P2(x2£¬y2)µÄÖ±Ïß¶¼¿ÉÒÔÓ÷½³Ì(y£y1)(x2£x1)£½(x£x1)(y2£y1)±íʾ
C£®²»¾¹ýÔµãµÄÖ±Ïß¶¼¿ÉÒÔÓ÷½³Ì
£«
£½1±íʾ
D£®¾¹ý¶¨µãA(0£¬b)µÄÖ±Ïß¶¼¿ÉÒÔÓ÷½³Ìy£½kx£«b±íʾ
¡¡B
[½âÎö]¡¡Åųý·¨£®A²»ÕýÈ·£¬¹ýµãP´¹Ö±xÖáµÄ·½³Ì²»ÄÜ£»C²»ÕýÈ·£¬Óë×ø±êÖáÆ½ÐеÄÖ±Ïߵķ½³Ì²»ÄÜ£»D²»ÕýÈ·£¬Ð±Âʲ»´æÔÚµÄÖ±Ïß²»ÄÜ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÏÂÁÐËĸöÃüÌâÖеÄÕæÃüÌâΪ£¨¡¡¡¡£©
| A¡¢?x0¡ÊZ£¬1£¼4x0£¼3 | B¡¢?x0¡ÊZ£¬5x0+1=0 | C¡¢?x¡ÊR£¬x2-1=0 | D¡¢?x¡ÊR£¬x2+x+2£¾0 |