题目内容
化简( ).
A. B. C. D.
已知函数的零点在区间,则
一同学在电脑中打出如下若干个圈:○●○○●○○○●○○○○●○○○○○●…若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前233个圈中的●的个数是( )
A.18 B.19 C.20 D.21
在下列四个命题中:
①函数的定义域是;
②已知,且,则的取值集合是;
③函数的图象关于直线对称,则的值等于;
③函数的最小值为.
把你认为正确的命题的序号都填在横线上____________________.
若平面四边形满足,则该四边形一定是( ).
A. 正方形 B. 菱形 C. 矩形 D. 直角梯形
设函数.
(Ⅰ)若在时有极值,求实数的值和的极大值;
(Ⅱ)若 在定义域上是增函数,求实数的取值范围.
从进入决赛的名选手中决出名一等奖,名二等奖,名三等奖,则可能的决赛结果共有_____种.(用数字作答)
某校在规划课程设置方案的调研中,随机抽取50名文科学生,调查对选做题倾向得下表:
(Ⅰ)从表中三种选题倾向中,选择可直观判断“选题倾向与性别有关系”的两种,作为选题倾向变量的取值,分析有多大的把握认为“所选两种选题倾向与性别有关系”.(只需要做出其中的一种情况)
(Ⅱ)按照分层抽样的方法,从倾向“平面几何选讲”与倾向“坐标系与参数方程”的学生中抽取8人进行问卷.
(ⅰ)分别求出抽取的8人中倾向“平面几何选讲”与倾向“坐标系与参数方程”的人数;
(ⅱ)若从这8人中任选3人,记倾向“平面几何选讲”与倾向“坐标系与参数方程”的人数的差为,求的分布列及数学期望.
已知函数
(1)判断f(x)的奇偶性并证明;
(2)若f(x)的定义域为[α,β](β>α>0),判断f(x)在定义域上的增减性,并加以证明;
(3)若0<m<1,使f(x)的值域为[logmm(β﹣1),logmm(α﹣1)]的定义域区间[α,β](β>α>0)是否存在?若存在,求出[α,β],若不存在,请说明理由.(12分)